Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38255466

RESUMEN

In this study, two novel quaternary ammonium urethane-dimethacrylates (QAUDMAs) were designed for potential use as comonomers in antibacterial dental composite restorative materials. QAUDMAs were synthesized via the reaction of 1,3-bis(1-isocyanato-1-methylethyl)benzene with 2-(methacryloyloxy)ethyl-2-decylhydroxyethylmethylammonium bromide (QA10+TMXDI) and 2-(methacryloyloxy)ethyl-2-dodecylhydroxyethylmethylammonium bromide (QA12+TMXDI). Their compositions with common dental dimethacrylates comprising QAUDMA 20 wt.%, urethane-dimethacrylate monomer (UDMA) 20 wt.%, bisphenol A glycerolate dimethacrylate (Bis-GMA) 40 wt.%, and triethylene glycol dimethacrylate (TEGDMA) 20 wt.%, were photocured. The achieved copolymers were characterized for their physicochemical and mechanical properties, including their degree of conversion (DC), glass transition temperature (Tg), polymerization shrinkage (S), water contact angle (WCA), flexural modulus (E), flexural strength (FS), hardness (HB), water sorption (WS), and water leachability (WL). The antibacterial activity of the copolymers was characterized by the minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) against Staphylococcus aureus and Escherichia coli. The achieved results were compared to the properties of a typical dental copolymer comprising UDMA 40 wt.%, Bis-GMA 40 wt.%, and TEGDMA 20 wt.%. The introduction of QAUDMAs did not deteriorate physicochemical and mechanical properties. The WS and WL increased; however, they were still satisfactory. The copolymer comprising QA10+TMXDI showed a higher antibacterial effect than that comprising QA12+TMXDI and that of the reference copolymer.

2.
Materials (Basel) ; 16(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38068147

RESUMEN

The paper presents the results of preliminary research on the possibility of synthesizing ZnO-TiO2 mixed coatings by plasma electrochemical oxidation (PEO). The aim of the work was to synthesize TiO2-ZnO mixed coatings on a titanium substrate from an electrolyte containing ZnO nanoparticles (NPs) and to assess the parameters of PEO on the structure, chemical composition, and properties of the obtained oxide coatings. The PEO process was carried out under various current-voltage conditions using different signals: DC, DC pulse, and AC. In this work, optimal conditions for the PEO process were determined to obtain well-adhering oxide coatings with the highest possible content of ZnO. The structure and morphology of the resulting oxide coatings were investigated, and their chemical and phase composition was comprehensively examined (EDX, XRD, XPS, and GD-OES). In addition, their basic optical properties were assessed. It has been shown that in the PEO DC pulse process, it is possible to obtain oxide coatings characterized by a high degree of structure order, high ZnO content in the oxide coating (3.6 at.%, XPS), and prospective applications for photocatalytic purposes (3.12 eV).

3.
Sci Rep ; 13(1): 13049, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567895

RESUMEN

The excess presence of phosphate(V) ions in the biosphere is one of the most serious problems that negatively affect aqueous biocenosis. Thus, phosphates(V) separation is considered to be important for sustainable development. In the presented study, an original cerium(IV)-modified chitosan-based hydrogel (Ce-CTS) was developed using the chemical co-precipitation method and then used as an adsorbent for efficient removal of phosphate(V) ions from their aqueous solutions. From the scientific point of view, it represents a completely new physicochemical system. It was found that the adsorptive removal of phosphate(V) anions by the Ce-CTS adsorbent exceeded 98% efficiency which is ca. 4-times higher compared with the chitosan-based hydrogel without any modification (non-cross-linked CTS). The best result of the adsorption capacity of phosphates(V) on the Ce-CTS adsorbent, equal to 71.6 mg/g, was a result of adsorption from a solution with an initial phosphate(V) concentration 9.76 mg/dm3 and pH 7, an adsorbent dose of 1 g/dm3, temperature 20 °C. The equilibrium interphase distribution data for the Ce-CTS adsorbent and aqueous solution of phosphates(V) agreed with the theoretical Redlich-Peterson and Hill adsorption isotherm models. From the kinetic point of view, the pseudo-second-order model explained the phosphates(V) adsorption rate for Ce-CTS adsorbent the best. The specific effect of porous structure of adsorbent influencing the diffusional mass transfer resistances was identified using Weber-Morris kinetic model. The thermodynamic study showed that the process was exothermic and the adsorption ran spontaneously. Modification of CTS with cerium(IV) resulted in the significant enhancement of the chitosan properties towards both physical adsorption (an increase of the point of zero charge of adsorbent), and chemical adsorption (through the presence of Ce(IV) that demonstrates a chemical affinity for phosphate(V) anions). The elaborated and experimentally verified highly effective adsorbent can be successfully applied to uptake phosphates(V) from aqueous systems. The Ce-CTS adsorbent is stable in the conditions of the adsorption process, no changes in the adsorbent structure or leaching of the inorganic filling were observed.

4.
Biomater Adv ; 153: 213540, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37429048

RESUMEN

Recurrent bacterial infections are a common cause of death for patients with cystic fibrosis and chronic obstructive pulmonary disease. Herein, we present the development of the degradable poly(sebacic acid) (PSA) microparticles loaded with different concentrations of azithromycin (AZ) as a potential powder formulation to deliver AZ locally to the lungs. We characterized microparticle size, morphology, zeta potential, encapsulation efficiency, interaction PSA with AZ and degradation profile in phosphate buffered saline (PBS). The antibacterial properties were evaluated using the Kirby-Bauer method against Staphylococcus aureus. Potential cytotoxicity was evaluated in BEAS-2B and A549 lung epithelial cells by the resazurin reduction assay and live/dead staining. The results show that microparticles are spherical and their size, being in the range of 1-5 µm, should be optimal for pulmonary delivery. The AZ encapsulation efficiency is nearly 100 % for all types of microparticles. The microparticles degradation rate is relatively fast - after 24 h their mass decreased by around 50 %. The antibacterial test showed that released AZ was able to successfully inhibit bacteria growth. The cytotoxicity test showed that the safe concentration of both unloaded and AZ-loaded microparticles was equal to 50 µg/ml. Thus, appropriate physicochemical properties, controlled degradation and drug release, cytocompatibility, and antibacterial behavior showed that our microparticles may be promising for the local treatment of lung infections.


Asunto(s)
Antibacterianos , Azitromicina , Humanos , Azitromicina/farmacología , Azitromicina/química , Azitromicina/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Sistemas de Liberación de Medicamentos/métodos , Pulmón/metabolismo
5.
Materials (Basel) ; 16(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37241482

RESUMEN

Using dental composite restorative materials with a copolymeric matrix chemically modified towards bioactive properties can help fight secondary caries. In this study, copolymers of 40 wt.% bisphenol A glycerolate dimethacrylate, 40 wt.% quaternary ammonium urethane-dimethacrylates (QAUDMA-m, where m represents 8, 10, 12, 14, 16 and 18 carbon atoms in the N-alkyl substituent), and 20 wt.% triethylene glycol dimethacrylate (BG:QAm:TEGs) were tested for (i) cytotoxicity on the L929 mouse fibroblast cell line; (ii) fungal adhesion, fungal growth inhibition zone, and fungicidal activity against C. albicans; and (iii) bactericidal activity against S. aureus and E. coli. BG:QAm:TEGs had no cytotoxic effects on L929 mouse fibroblasts because the reduction of cell viability was less than 30% compared to the control. BG:QAm:TEGs also showed antifungal activity. The number of fungal colonies on their surfaces depended on the water contact angle (WCA). The higher the WCA, the greater the scale of fungal adhesion. The fungal growth inhibition zone depended on the concentration of QA groups (xQA). The lower the xQA, the lower the inhibition zone. In addition, 25 mg/mL BG:QAm:TEGs suspensions in culture media showed fungicidal and bactericidal effects. In conclusion, BG:QAm:TEGs can be recognized as antimicrobial biomaterials with negligible biological patient risk.

6.
Dent Mater ; 39(7): 659-664, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37217427

RESUMEN

OBJECTIVES: This study assumed that the quaternary ammonium urethane-dimethacrylate derivative (QAUDMA-m, where m was 8, 10, 12, 14, 16, 18, and corresponded to the number of carbon atoms in the N-alkyl substituent) can be used to achieve copolymers with high mechanical performance and antibacterial activity. METHODS: Photocured copolymers of bisphenol A glycerolate dimethacrylate (Bis-GMA) 40 wt%, QAUDMA-m 40 wt%, and triethylene glycol dimethacrylate (TEGDMA) 20 wt% (BG:QAm:TEG) were characterized by the degree of conversion (DC), flexural strength (FS), flexural modulus (E), hardness (HB), and antibacterial properties (the number of bacteria colonies adhered to copolymer surfaces and inhibition zone diameter (IZD)) against Staphylococcus aureus and Escherichia coli. Reference copolymers of Bis-GMA, urethane-dimethacrylate monomer (UDMA), and TEGDMA (BG:TEG and BG:UD:TEG) were also characterized. RESULTS: The DC of BG:QAm:TEGs ranged from 0.59 to 0.68, HB from 83.84 to 153.91 MPa, FS from 50.81 to 74.47 MPa, and E from 1986.74 to 3716.68 MPa. The number of S. aureus and E. coli bacteria adhered to BG:QAm:TEG surfaces was from 0 (no bacteria observed) to 6.47 and 4.99 log(CFU/mL), respectively. IZD was from 10 and 5 mm (no inhibition zone) to 23 and 21 mm, respectively. Three copolymers: BG:QA8:TEG, BG:QA10:TEG, and BG:QA12:TEG had similar or better mechanical properties than the reference copolymers, but unlike them, they showed high antibacterial activity against both bacteria strains. SIGNIFICANCE: The obtained copolymers can offer a good, mechanically efficient, bioactive alternative to BG:TEG and BG:UD:TEG copolymers. The use of such materials can help to make progress in dental health care.


Asunto(s)
Compuestos de Amonio , Bisfenol A Glicidil Metacrilato/farmacología , Escherichia coli , Staphylococcus aureus , Metacrilatos/farmacología , Ácidos Polimetacrílicos/farmacología , Polietilenglicoles/farmacología , Poliuretanos/farmacología , Antibacterianos/farmacología , Resinas Compuestas , Ensayo de Materiales
7.
ACS Appl Mater Interfaces ; 15(17): 21699-21718, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37083334

RESUMEN

Aseptic loosening and periprosthetic infections are complications that can occur at the interface between inert ceramic implants and natural body tissues. Therefore, the need for novel materials with antibacterial properties to prevent implant-related infection is evident. This study proposes multifunctionalizing the inert ceramic implant surface by biomimetic calcium phosphate (CaP) coating decorated with antibiotic-loaded nanoparticles for bioactivity enhancement and antibacterial effect. This study aimed to coat zirconium dioxide (ZrO2) substrates with a bioactive CaP-layer containing drug-loaded degradable polymer nanoparticles (NPs). The NPs were loaded with two antibiotics, gentamicin or bacitracin. The immobilization of NPs happened by two deposition methods: coprecipitation and drop-casting. X-ray diffraction (XRD), scanning electron microscopy (SEM), and cross-section analyses were used to characterize the coatings. MG-63 osteoblast-like cells and human mesenchymal stem cells (hMSC) were chosen for in vitro tests. Antibacterial activity was assessed with S. aureus and E. coli. The coprecipitation method allowed for a favorable homogeneous distribution of the NPs within the CaP coating. The CaP coating was constituted of hydroxyapatite and octacalcium phosphate; its thickness was 3.8 ± 1 µm with cavities of around 1 µm suitable for hosting NPs with a size of 200 nm. Antibiotics were released from the coatings in a controlled manner for 1 month. The cell culture study has confirmed the excellent behavior of the coprecipitated coating, showing cytocompatibility and a homogeneous distribution of the cells on the coated surfaces. The increase in alkaline phosphatase activity showed osteogenic differentiation. The materials were found to inhibit the growth of bacteria. Newly developed coatings with antibacterial and bioactive properties are promising candidates to prevent peri-implant infectious bone diseases.


Asunto(s)
Antibacterianos , Nanopartículas , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Osteogénesis , Staphylococcus aureus , Biomimética , Escherichia coli , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Fosfatos de Calcio/farmacología , Fosfatos de Calcio/química , Cerámica/farmacología , Propiedades de Superficie , Titanio/química
8.
ACS Appl Mater Interfaces ; 15(16): 19863-19876, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37041124

RESUMEN

Dental implants have become a routine, affordable, and highly reliable technology to replace tooth loss. In this regard, titanium and its alloys are the metals of choice for the manufacture of dental implants because they are chemically inert and biocompatible. However, for special cohorts of patients, there is still a need for improvements, specifically to increase the ability of implants to integrate into the bone and gum tissues and to prevent bacterial infections that can subsequently lead to peri-implantitis and implant failures. Therefore, titanium implants require sophisticated approaches to improve their postoperative healing and long-term stability. Such treatments range from sandblasting to calcium phosphate coating, fluoride application, ultraviolet irradiation, and anodization to increase the bioactivity of the surface. Plasma electrolytic oxidation (PEO) has gained popularity as a method for modifying metal surfaces and delivering the desired mechanical and chemical properties. The outcome of PEO treatment depends on the electrochemical parameters and composition of the bath electrolyte. In this study, we investigated how complexing agents affect the PEO surfaces and found that nitrilotriacetic acid (NTA) can be used to develop efficient PEO protocols. The PEO surfaces generated with NTA in combination with sources of calcium and phosphorus were shown to increase the corrosion resistance of the titanium substrate. They also support cell proliferation and reduce bacterial colonization and, hence, lead to a reduction in failed implants and repeated surgeries. Moreover, NTA is an ecologically favorable chelating agent. These features are necessary for the biomedical industry to be able to contribute to the sustainability of the public healthcare system. Therefore, NTA is proposed to be used as a component of the PEO bath electrolyte to obtain bioactive surface layers with properties desired for next-generation dental implants.


Asunto(s)
Implantes Dentales , Titanio , Humanos , Titanio/química , Ácido Nitrilotriacético , Propiedades de Superficie , Oxidación-Reducción , Metales , Aleaciones , Electrólitos , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química
9.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076921

RESUMEN

Biofilms are complex structures formed by bacteria, fungi, or even viruses on biotic and abiotic surfaces, and they can be found in almost any part of the human body. The prevalence of biofilm-associated diseases has increased in recent years, mainly because of the frequent use of indwelling medical devices that create opportunities for clinically important bacteria and fungi to form biofilms either on the device or on the neighboring tissues. As a result of their resistance to antibiotics and host immunity factors, biofilms have been associated with the development or persistence of several clinically important diseases. The inability to completely eradicate biofilms drastically increases the burden of disease on both the patient and the healthcare system. Therefore, it is crucial to develop innovative ways to tackle the growth and development of biofilms. This review focuses on dental- and implant-associated biofilm infections, their prevalence in humans, and potential therapeutic intervention strategies, including the recent advances in pharmacology and biomedical engineering. It lists current strategies used to control the formation of clinically important biofilms, including novel antibiotics and their carriers, antiseptics and disinfectants, small molecule anti-biofilm agents, surface treatment strategies, and nanostructure functionalization, as well as multifunctional coatings particularly suitable for providing antibacterial effects to the surface of implants, to treat either dental- or implant-related bacterial infections.


Asunto(s)
Antiinfecciosos Locales , Infecciones Bacterianas , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/prevención & control , Biopelículas , Hongos , Humanos
10.
Molecules ; 27(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014398

RESUMEN

For several decades, natural products have been widely researched and their native scaffolds are the basis for the design and synthesis of new potential therapeutic agents. Betulin is an interesting biologically attractive natural parent molecule with a high safety profile and can easily undergo a variety of structural modifications. Herein, we describe the synthesis of new molecular hybrids of betulin via covalent linkage with an alkyltriphenylphosphonium moiety. The proposed strategy enables the preparation of semi-synthetic derivatives (28-TPP⊕ BN and 3,28-bisTPP⊕ BN) from betulin through simple transformations in high yields. The obtained results showed that the presence of a lipophilic cation improved the solubility of the tested analogs compared to betulin, and increased their cytotoxicity. Among the triphenylphosphonium derivatives tested, analogs 7a (IC50 of 5.56 µM) and 7b (IC50 of 5.77 µM) demonstrated the highest cytotoxicity against the colorectal carcinoma cell line (HCT 116). TPP⊕-conjugates with betulin showed antimicrobial properties against Gram-positive reference Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis ATCC 12228 bacteria, at a 200 µM concentration in water. Hence, the conjugation of betulin's parent backbone with a triphenylphosphonium moiety promotes transport through the hydrophobic barriers of the mitochondrial membrane, making it a promising strategy to improve the bioavailability of natural substances.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Triterpenos , Antibacterianos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Relación Estructura-Actividad , Triterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA