Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Rep ; 14(1): 19114, 2024 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155321

RESUMEN

Developing advanced systems for 3D brain tissue segmentation from neonatal magnetic resonance (MR) images is vital for newborn structural analysis. However, automatic segmentation of neonatal brain tissues is challenging due to smaller head size and inverted T1/T2 tissue contrast compared to adults. In this work, a subject-specific atlas based technique is presented for segmentation of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) from neonatal MR images. It involves atlas selection, subject-specific atlas creation using random forest (RF) classifier, and brain tissue segmentation using the expectation maximization-Markov random field (EM-MRF) method. To increase the segmentation accuracy, different tissue intensity- and gradient-based features were used. Evaluation on 40 neonatal MR images (gestational age of 37-44 weeks) demonstrated an overall accuracy of 94.3% and an average Dice similarity coefficient (DSC) of 0.945 (GM), 0.947 (WM), and 0.912 (CSF). Compared to multi-atlas segmentation methods like SEGMA and EM-MRF with multiple atlases, our method improved accuracy by up to 4%, particularly in complex tissue regions. Our proposed method allows accurate brain tissue segmentation, a crucial step in brain magnetic resonance imaging (MRI) applications including brain surface reconstruction and realistic head model creation in neonates.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Recién Nacido , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Femenino , Sustancia Blanca/diagnóstico por imagen , Masculino , Imagenología Tridimensional/métodos , Atlas como Asunto , Sustancia Gris/diagnóstico por imagen
2.
Eur J Neurosci ; 58(3): 2746-2765, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37448164

RESUMEN

The accuracy of electroencephalogram (EEG) source localization is compromised because of head modelling errors. In this study, we investigated the effect of inaccuracy in the conductivity of head tissues and head model structural deficiencies on the accuracy of EEG source analysis in premature neonates. A series of EEG forward and inverse simulations was performed by introducing structural deficiencies into the reference head models to generate test models, which were then used to investigate head modelling errors caused by cerebrospinal fluid (CSF) exclusion, lack of grey matter (GM)-white matter (WM) distinction, fontanel exclusion and inaccuracy in skull conductivity. The modelling errors were computed between forward and inverse solutions obtained using the reference and test models generated for each deficiency. Our results showed that the exclusion of CSF from the head model had a strong widespread effect on the accuracy of the EEG source localization with position errors lower than 4.17 mm. The GM and WM distinction also caused strong localization errors (up to 3.5 mm). The exclusion of fontanels from the head model also strongly affected the accuracy of the EEG source localization for sources located beneath the fontanels with a maximum localization error of 4.37 mm. Similarly, inaccuracies in the skull conductivity caused errors in EEG forward and inverse modelling in sources beneath cranial bones. Our results indicate that the accuracy of EEG source imaging in premature neonates can be largely improved by using head models, which include not only the brain, skull and scalp but also the CSF, GM, WM and fontanels.


Asunto(s)
Electroencefalografía , Modelos Neurológicos , Recién Nacido , Humanos , Electroencefalografía/métodos , Encéfalo , Cráneo , Cuero Cabelludo
3.
Sci Rep ; 13(1): 5847, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037859

RESUMEN

Cannabis is one of the most used and commodified illicit substances worldwide, especially among young adults. The neurobiology mechanism of cannabis is yet to be identified particularly in youth. The purpose of this study was to concurrently measure alterations in brain structural and functional connectivity in cannabis users using resting-state functional magnetic resonance images (rs-fMRI) and diffusion-weighted images (DWI) from a group of 73 cannabis users (age 22-36, 19 female) in comparison with 73 healthy controls (age 22-36, 14 female) from Human Connectome Project (HCP). Several significant differences were observed in local structural/functional network measures (e.g. degree and clustering coefficient), being prominent in the insular and frontal opercular cortex and lateral/medial temporal cortex. The rich-club organization of structural networks revealed a normal trend, distributed within bilateral frontal, temporal and occipital regions. However, minor differences were found between the two groups in the superior and inferior temporal gyri. Functional rich-club nodes were mostly located within parietal and posterior areas, with minor differences between the groups found mainly in the centro-temporal and parietal regions. Regional network measures of structural/functional networks were associated with times used cannabis (TUC) in several regions. Although the structural/functional network in both groups showed small-world property, no differences between cannabis users and healthy controls were found regarding the global network measures, showing no association with cannabis use. After FDR correction, all of the significant associations between network measures and TUC were found to be insignificant, except for the association between degree and TUC within the presubiculum region. To recap, our findings revealed alterations in local topological properties of structural and functional networks in cannabis users, although their global brain network organization remained intact.


Asunto(s)
Cannabis , Conectoma , Fumar Marihuana , Adulto Joven , Adolescente , Humanos , Femenino , Adulto , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Conectoma/métodos
4.
Sleep Sci ; 15(3): 356-362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158717

RESUMEN

Objectives: Military personnel are unique occupational groups who happen to frequently experience sleep insuffciencies. Since sleep disorders are known to be linked to many psychiatric symptoms, sleep disturbance is a salient concern among active duty service members and veterans. Existing evidence indicates that although sleep disturbances co-occur with mental illnesses, there is a tendency to particularly label them as consequences of certain mental health issues. Material and Methods: This review focuses on the emerging evidence which identifies sleep disturbances as a precursor for mental illnesses. In this regard, the impact of sleep disturbance on the development of mental health outcomes including post-traumatic stress disorder (PTSD), depression, and anxiety has been thoroughly scrutinized. A systematic search was conducted using PubMed, Scopus, and Web of Science academic databases using appropriate keywords. Results: Reviewed evidence substantiates the predicting role of sleep complaints and disorders to herald PTSD, depression, and anxiety among military staff. Conclusion: Early diagnosis of sleep disturbances and properly addressing them in active-duty service members and veterans should be then sought to prevent the development and progression of consequent mental health- related comorbidities in this study group.

5.
Sleep Sci ; 15(2): 216-223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755902

RESUMEN

Objectives: This investigation aimed to compare caffeinated gums with two different dosages of caffeine (200mg vs. 300mg) by assessing their effectiveness on the improvement of cognitive functions among Iranian individuals voluntarily suffering from 30 hours of sleep deprivation. Material and Methods: Thirty-four healthy male volunteers with ages from 28 to 35 years old were randomly assigned to either 200 or 300mg caffeine intake. Each participant completed CANTAB subtests to assess their core cognitive functions including MOT, RTI, RVP, and SWM before and after sleep deprivation, as well as after being treated with caffeinated gum. Results: The 300mg caffeine intake group indicated higher levels of enhancement of core cognitive functions compared with those in the 200mg caffeine intake group. Conclusion: This study suggests that the dose of 300mg of caffeine could effectively enhance the cognitive functions of Iranian individuals suffering from sleep deprivation.

6.
Sci Rep ; 12(1): 3567, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246553

RESUMEN

Cue-induced drug craving and disinhibition are two essential components of continued drug use and relapse in substance use disorders. While these phenomena develop and interact across time, the temporal dynamics of their underlying neural activity remain under-investigated. To explore these dynamics, an analysis of time-varying activation was applied to fMRI data from 62 men with methamphetamine use disorder in their first weeks of recovery in an abstinence-based treatment program. Using a mixed block-event, factorial cue-reactivity/Go-NoGo task and a sliding window across the task duration, dynamically-activated regions were identified in three linear mixed effects models (LMEs). Habituation to drug cues across time was observed in the superior temporal gyri, amygdalae, left hippocampus, and right precuneus, while response inhibition was associated with the sensitization of temporally-dynamic activations across many regions of the inhibitory frontoparietal network. Methamphetamine-related response inhibition was associated with temporally-dynamic activity in the parahippocampal gyri and right precuneus (corrected p-value < 0.001), which show a declining cue-reactivity contrast and an increasing response inhibition contrast. Overall, the declining craving-related activations (habituation) and increasing inhibition-associated activations (sensitization) during the task duration suggest the gradual recruitment of response inhibitory processes and a concurrent habituation to drug cues in areas with temporally-dynamic methamphetamine-related response inhibition. Furthermore, temporally dynamic cue-reactivity and response inhibition were correlated with behavioral and clinical measures such as the severity of methamphetamine use and craving, impulsivity and inhibitory task performance. This exploratory study demonstrates the time-variance of the neural activations undergirding cue-reactivity, response inhibition, and response inhibition during exposure to drug cues, and suggests a method to assess this dynamic interplay. Analyses that can capture temporal fluctuations in the neural substrates of drug cue-reactivity and response inhibition may prove useful for biomarker development by revealing the rate and pattern of sensitization and habituation processes, and may inform mixed cue-exposure intervention paradigms which could promote habituation to drug cues and sensitization in inhibitory control regions.


Asunto(s)
Metanfetamina , Trastornos Relacionados con Sustancias , Condicionamiento Psicológico , Ansia/fisiología , Señales (Psicología) , Humanos , Imagen por Resonancia Magnética , Masculino , Metanfetamina/efectos adversos
7.
Drug Alcohol Depend ; 233: 109353, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35249000

RESUMEN

BACKGROUND: Drug-related cue-reactivity, dysfunctional negative emotion processing, and response-disinhibition constitute three core aspects of methamphetamine use disorder (MUD). These phenomena have been studied independently, but the neuroscientific literature on their interaction in addictive disorders remains scant. METHODS: 62 individuals with MUD were scanned when responding to the geometric Go or No-Go cues superimposed over blank, neutral, negative-emotional and drug-related background images. Neural correlates of drug and negative-emotional cue-reactivity, response-inhibition and their interactions were estimated, and methamphetamine cue-reactivity was compared between individuals with MUD and 23 healthy controls. Relationships between behavioral characteristics and observed activations were investigated. RESULTS: Individuals with MUD had longer reaction times and more errors in drug and negative-emotional compared to blank blocks, and more omission errors in drug compared to neutral blocks. They showed higher drug cue-reactivity than controls across prefrontal, fusiform, and visual regions (Z > 3.1, p-corrected<0.05). Response-inhibition was associated with precuneal, inferior parietal, anterior cingulate, temporal, and inferior frontal activations (Z > 3.1, p-corrected<0.05). Response-inhibition in drug cue blocks coincided with higher activations in the visual cortex and lower activations in the paracentral lobule and superior and inferior frontal gyri, while inhibition during negative-emotional blocks led to higher superior parietal, fusiform, and lateral occipital activations (Z > 3.1, p-corrected<0.05). CONCLUSION: Drug cue-reactivity may impair response inhibition partly through activating dis-inhibitory regions, while temporal and parietal activations associated with response-inhibition in negative blocks suggest compensatory activity. Results suggest that drug and negative-emotional cue-reactivity influence response-inhibition, and the study of these interactions may aid mechanistic understanding of methamphetamine use disorder.


Asunto(s)
Metanfetamina , Encéfalo/diagnóstico por imagen , Ansia/fisiología , Señales (Psicología) , Emociones , Humanos , Imagen por Resonancia Magnética , Metanfetamina/efectos adversos
8.
Brain Sci ; 11(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34356174

RESUMEN

Growing evidence indicates that disruptions in the brain's functional connectivity play an important role in the pathophysiology of ADHD. The present study investigates alterations in resting-state EEG source connectivity and rich-club organization in children with inattentive (ADHDI) and combined (ADHDC) ADHD compared with typically developing children (TD) under the eyes-closed condition. EEG source analysis was performed by eLORETA in different frequency bands. The lagged phase synchronization (LPS) and graph theoretical metrics were then used to examine group differences in the topological properties and rich-club organization of functional networks. Compared with the TD children, the ADHDI children were characterized by a widespread significant decrease in delta and beta LPS, as well as increased theta and alpha LPS in the left frontal and right occipital regions. The ADHDC children displayed significant increases in LPS in the central, temporal and posterior areas. Both ADHD groups showed small-worldness properties with significant increases and decreases in the network degree in the θ and ß bands, respectively. Both subtypes also displayed reduced levels of network segregation. Group differences in rich-club distribution were found in the central and posterior areas. Our findings suggest that resting-state EEG source connectivity analysis can better characterize alterations in the rich-club organization of functional brain networks in ADHD patients.

9.
J Neurosci Methods ; 362: 109296, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34302860

RESUMEN

BACKGROUND: Brain tumor extraction from magnetic resonance (MR) images is challenging due to variations in the location, shape, size and intensity of tumors. Manual delineation of brain tumors from MR images is time-consuming and prone to human errors. METHOD: In this paper, we present a method for automatic tumor extraction from multimodal MR images. Brain tumors are first detected using k-means clustering. A morphological region-based active contour model is then used for tumor extraction using an initial contour defined based on the boundary of the detected brain tumor regions. The contour evolution for tumor extraction was performed using successive application of morphological operators. In our model, a Gaussian distribution was used to model local image intensities. The spatial correlation between neighboring voxels was also modeled using Markov random field. RESULTS: The proposed method was evaluated on BraTS 2013 dataset including patients with high-grade and low-grade tumors. In comparison with other active contour based methods, the proposed method yielded better performance on tumor segmentation with mean Dice similarity coefficients of 0.9179 ( ±â€¯0.025) and 0.8910 ( ±â€¯0.042) obtained on high-grade and low-grade tumors, respectively. CONCLUSION: The proposed method achieved higher accuracies for brain tumor extraction in comparison to other contour-based methods.


Asunto(s)
Neoplasias Encefálicas , Procesamiento de Imagen Asistido por Computador , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Humanos , Imagen por Resonancia Magnética
10.
J Neural Eng ; 18(4)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34289458

RESUMEN

Attention deficit/hyperactivity disorder (ADHD) is characterized by inattention, hyperactivity and impulsivity. In this study, we investigated group differences in dynamic functional connectivity (dFC) between 113 children with inattentive (46 ADHDI) and combined (67 ADHDC) ADHD and 76 typically developing (TD) children using resting-state functional MRI data. For dynamic connectivity analysis, the data were first decomposed into 100 independent components, among which 88 were classified into eight well-known resting-state networks (RSNs). Three discrete FC states were then identified using k-means clustering and used to estimate transition probabilities between states in both patient and control groups using a hidden Markov model. Our results showed state-dependent alterations in intra and inter-network connectivity in both ADHD subtypes in comparison with TD. Spending less time than healthy controls in state 1, both ADHDIand ADHDCwere characterized with weaker intra-hemispheric connectivity with functional asymmetries. In this state, ADHDIfurther showed weaker inter-hemispheric connectivity. The patients spent more time in state 2, exhibiting characteristic abnormalities in corticosubcortical and corticocerebellar connectivity. In state 3, a less frequently state observed across the ADHD and TD children, ADHDCwas differentiated from ADHDIby significant alterations in FC between bilateral temporal regions and other brain areas in comparison with TD. Across all three states, several strategic brain regions, mostly bilateral, exhibited significant alterations in both static functional connectivity (sFC) and dFC in the ADHD groups compared to TD, including inferior, middle and superior temporal gyri, middle frontal gyri, insula, anterior cingulum cortex, precuneus, calcarine, fusiform, superior motor area, and cerebellum. Our results show distributed abnormalities in sFC and dFC between different large-scale RSNs including cortical and subcortical regions in both ADHD subtypes compared to TD. Our findings show that the dynamic changes in brain FC can better explain the underlying pathophysiology of ADHD such as deficits in visual cognition, attention, memory and emotion processing, and cognitive and motor control.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Corteza Motora , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Niño , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA