Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11435, 2024 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763939

RESUMEN

Autism spectrum disorder (ASD) exhibits a gender bias, with boys more frequently affected than girls. Similarly, in mouse models induced by prenatal exposure to valproic acid (VPA), males typically display reduced sociability, while females are less affected. Although both males and females exhibit VPA effects on neuroinflammatory parameters, these effects are sex-specific. Notably, females exposed to VPA show increased microglia and astrocyte density during the juvenile period. We hypothesized that these distinct neuroinflammatory patterns contribute to the resilience of females to VPA. To investigate this hypothesis, we treated juvenile animals with intraperitoneal bacterial lipopolysaccharides (LPS), a treatment known to elicit brain neuroinflammation. We thus evaluated the impact of juvenile LPS-induced inflammation on adult sociability and neuroinflammation in female mice prenatally exposed to VPA. Our results demonstrate that VPA-LPS females exhibit social deficits in adulthood, overriding the resilience observed in VPA-saline littermates. Repetitive behavior and anxiety levels were not affected by either treatment. We also evaluated whether the effect on sociability was accompanied by heightened neuroinflammation in the cerebellum and hippocampus. Surprisingly, we observed reduced astrocyte and microglia density in the cerebellum of VPA-LPS animals. These findings shed light on the complex interactions between prenatal insults, juvenile inflammatory stimuli, and sex-specific vulnerability in ASD-related social deficits, providing insights into potential therapeutic interventions for ASD.


Asunto(s)
Trastorno del Espectro Autista , Lipopolisacáridos , Efectos Tardíos de la Exposición Prenatal , Conducta Social , Ácido Valproico , Animales , Femenino , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Embarazo , Ratones , Ácido Valproico/efectos adversos , Masculino , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/etiología , Microglía/efectos de los fármacos , Microglía/metabolismo , Modelos Animales de Enfermedad , Conducta Animal/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Ratones Endogámicos C57BL
2.
Psychoneuroendocrinology ; 110: 104441, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31541913

RESUMEN

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with an incidence four times higher in boys than in girls. By analyzing the effect of sex in a mouse model of ASD, we were able to identify immune alterations that could underlie this sex bias. Pregnant mice were injected subcutaneously with 600 mg/kg of valproic acid (VPA) or saline at gestational day 12.5. Their male and female offspring were evaluated in a social interaction test at adulthood, and only male VPA mice showed reduced sociability levels and a lack of preference for the social stimulus over a novel object. We then analyzed the corticosterone (CORT) response to an inflammatory stimulus, as a measure of the hypothalamus-pituitary-adrenal (HPA) function, and the neuroinflammatory state in adult and young animals. Adult VPA males exhibited increased basal CORT levels, while VPA females showed levels comparable to controls. As male mice showed a blunted CORT response at PD21 when compared to female mice, we propose that this early dimorphism could explain the different effects of VPA on HPA function. In addition, prenatal VPA exposure resulted in altered astroglial and microglial cell density levels in the cerebellum and dentate gyrus of adult mice. These neuroinflammatory effects were more pronounced in females than males, and appeared at early developmental stages. Hence, these postnatal glial density differences could underlie the behavioral alterations observed in adulthood, when only males show a social deficit. Our work contributes to the understanding of biological mechanisms affected by VPA on male and female rodents and shed light on the study of possible resilience mechanisms in the female population and/or susceptibility to ASD in boys.


Asunto(s)
Trastorno del Espectro Autista/patología , Neuritis/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Resiliencia Psicológica/efectos de los fármacos , Conducta Social , Ácido Valproico/efectos adversos , Animales , Animales no Consanguíneos , Trastorno del Espectro Autista/inmunología , Trastorno del Espectro Autista/psicología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inducido químicamente , Femenino , Relaciones Interpersonales , Masculino , Ratones , Neuritis/fisiopatología , Neuritis/psicología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/psicología , Caracteres Sexuales
3.
Mol Autism ; 9: 36, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29946415

RESUMEN

Background: Autism spectrum disorder (ASD) is characterized by impaired social interactions and repetitive patterns of behavior. Symptoms appear in early life and persist throughout adulthood. Early social stimulation can help reverse some of the symptoms, but the biological mechanisms of these therapies are unknown. By analyzing the effects of early social stimulation on ASD-related behavior in the mouse, we aimed to identify brain structures that contribute to these behaviors. Methods: We injected pregnant mice with 600-mg/kg valproic acid (VPA) or saline (SAL) at gestational day 12.5 and evaluated the effect of weaning their offspring in cages containing only VPA animals, only SAL animals, or mixed. We analyzed juvenile play at PD21 and performed a battery of behavioral tests in adulthood. We then used preclinical PET imaging for an unbiased analysis of the whole brain of these mice and studied the function of the piriform cortex by c-Fos immunoreactivity and HPLC. Results: Compared to control animals, VPA-exposed animals play less as juveniles and exhibit a lower frequency of social interaction in adulthood when reared with other VPA mice. In addition, these animals were less likely to investigate social odors in the habituation/dishabituation olfactory test. However, when VPA animals were weaned with control animals, these behavioral alterations were not observed. Interestingly, repetitive behaviors and depression-related behaviors were not affected by social enrichment. We also found that VPA animals present high levels of glucose metabolism bilaterally in the piriform cortex (Pir), a region known to be involved in social behaviors. Moreover, we found alterations in the somatosensory, motor, and insular cortices. Remarkably, these effects were mostly reversed after social stimulation. To evaluate if changes in glucose metabolism in the Pir correlated with changes in neuronal activity, we measured c-Fos immunoreactivity in the Pir and found it increased in animals prenatally exposed to VPA. We further found increased dopamine turnover in the Pir. Both alterations were largely reversed by social enrichment. Conclusions: We show that early social enrichment can specifically rescue social deficits in a mouse model of ASD. Our results identified the Pir as a structure affected by VPA-exposure and social enrichment, suggesting that it could be a key component of the social brain circuitry.


Asunto(s)
Trastorno del Espectro Autista/terapia , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Conducta Social , Terapia Socioambiental/métodos , Ácido Valproico/toxicidad , Animales , Trastorno del Espectro Autista/etiología , Encéfalo/diagnóstico por imagen , Femenino , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Ácido Valproico/administración & dosificación
4.
Front Physiol ; 7: 261, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445851

RESUMEN

During an infection, animals suffer several changes in their normal physiology and behavior which may include lethargy, appetite loss, and reduction in grooming and general movements. This set of alterations is known as sickness behavior and although it has been extensively believed to be orchestrated primarily by the immune system, a relevant role for the central nervous system has also been established. The aim of the present work is to develop a simple animal model to allow studying how the immune and the nervous systems interact coordinately during an infection. We administered a bacterial lipopolysaccharide (LPS) into the thorax of honey bees to mimic a bacterial infection, and then we evaluated a set of stereotyped behaviors of the animals that might be indicative of sickness behavior. First, we show that this immune challenge reduces the locomotor activity of the animals in a narrow time window after LPS injection. Furthermore, bees exhibit a loss of appetite 60 and 90 min after injection, but not 15 h later. We also demonstrate that LPS injection reduces spontaneous antennal movements in harnessed animals, which suggests a reduction in the motivational state of the bees. Finally, we show that the LPS injection diminishes the interaction between animals, a crucial behavior in social insects. To our knowledge these results represent the first systematic description of sickness behavior in honey bees and provide important groundwork for the study of the interaction between the immune and the neural systems in an insect model.

5.
Psychoneuroendocrinology ; 72: 11-21, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27337090

RESUMEN

In Autism Spectrum Disorders (ASD), a bias to a higher incidence in boys than in girls has been reported. With the aim to identify biological mechanisms acting in female animals that could underlie this bias, we used an extensively validated mouse model of ASD: the prenatal exposure to valproic acid (VPA). We found postnatal behavioral alterations in female VPA pups: a longer latency in righting reflex at postnatal day (P) 3, and a delay in the acquisition of the acoustic startle response. We also analyzed the density of glial cells in the prefrontal cortex, hippocampus and cerebellum, in VPA and control animals. Female VPA pups showed alterations in the density of astrocytes and microglial cells between P21 and P42, with specific dynamics in each brain region. We also found a decrease in histone 3 acetylation in the cerebellum of female VPA pups at P14, suggesting that the changes in glial cell density could be due to alterations in the epigenetic developmental program. Finally, no differences in maternal behavior were found. Our results show that female VPA pups exhibit behavioral and inflammatory alterations postnatally, although they have been reported to have normal levels of sociability in adulthood. With our work, we contribute to the understanding of biological mechanisms underlying different effects of VPA on male and female rodents, and we hope to help elucidate whether there are factors increasing susceptibility to ASD in boys and/or resilience in girls.


Asunto(s)
Astrocitos/citología , Conducta Animal/fisiología , Encéfalo/citología , Encéfalo/metabolismo , GABAérgicos/efectos adversos , Conducta Materna/fisiología , Microglía/citología , Efectos Tardíos de la Exposición Prenatal , Reflejo de Sobresalto/fisiología , Ácido Valproico/efectos adversos , Animales , Recuento de Células , Femenino , Ratones , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...