Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39123948

RESUMEN

Advances in connectivity, communication, computation, and algorithms are driving a revolution that will bring economic and social benefits through smart technologies of the Industry 4.0 era. At the same time, attackers are targeting this expanded cyberspace to exploit it. Therefore, many cyberattacks are reported each year at an increasing rate. Traditional security devices such as firewalls, intrusion detection systems (IDSs), intrusion prevention systems (IPSs), anti-viruses, and the like, often cannot detect sophisticated cyberattacks. The security information and event management (SIEM) system has proven to be a very effective security tool for detecting and mitigating such cyberattacks. A SIEM system provides a holistic view of the security status of a corporate network by analyzing log data from various network devices. The correlation engine is the most important module of the SIEM system. In this study, we propose the optimized correlator (OC), a novel correlation engine that replaces the traditional regex matching sub-module with a novel high-performance multiple regex matching library called "Hyperscan" for parallel log data scanning to improve the performance of the SIEM system. Log files of 102 MB, 256 MB, 512 MB, and 1024 MB, generated from log data received from various devices in the network, are input into the OC and simple event correlator (SEC) for applying correlation rules. The results indicate that OC is 21 times faster than SEC in real-time response and 2.5 times more efficient in execution time. Furthermore, OC can detect multi-layered attacks successfully.

2.
Sensors (Basel) ; 23(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36904801

RESUMEN

In the fourth industrial revolution, the scale of execution for interactive applications increased substantially. These interactive and animated applications are human-centric, and the representation of human motion is unavoidable, making the representation of human motions ubiquitous. Animators strive to computationally process human motion in a way that the motions appear realistic in animated applications. Motion style transfer is an attractive technique that is widely used to create realistic motions in near real-time. motion style transfer approach employs existing captured motion data to generate realistic samples automatically and updates the motion data accordingly. This approach eliminates the need for handcrafted motions from scratch for every frame. The popularity of deep learning (DL) algorithms reshapes motion style transfer approaches, as such algorithms can predict subsequent motion styles. The majority of motion style transfer approaches use different variants of deep neural networks (DNNs) to accomplish motion style transfer approaches. This paper provides a comprehensive comparative analysis of existing state-of-the-art DL-based motion style transfer approaches. The enabling technologies that facilitate motion style transfer approaches are briefly presented in this paper. When employing DL-based methods for motion style transfer, the selection of the training dataset plays a key role in the performance. By anticipating this vital aspect, this paper provides a detailed summary of existing well-known motion datasets. As an outcome of the extensive overview of the domain, this paper highlights the contemporary challenges faced by motion style transfer approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA