Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 56(99): 15537-15540, 2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33351012

RESUMEN

We demonstrate the fabrication of Li-containing ("lithicone") thin films prepared via molecular layer deposition (MLD) using lithium tert-butoxide and ethylene glycol. X-ray photoelectron spectroscopy reveals that the stoichiometry of the lithicone is Li1.5C2O1.8 (H omitted), with C-O-Li moieties present in the film. The bonding environment of lithicone is distinct from that of lithium carbonate or MLD alucone films. Electrochemical impedance spectroscopy measurements show that annealed lithicone films exhibit room temperature ionic conductivity of 3.6-5 × 10-8 S cm-1 with an activation energy of ∼0.6 eV. The lithicone MLD process provides a pathway to further develop hybrid inorganic-organic Li-ion conducting materials for future battery applications.

2.
ACS Nano ; 14(12): 17262-17272, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33216539

RESUMEN

There is an increasing interest in additive nanomanufacturing processes, which enable customizable patterning of functional materials and devices on a wide range of substrates. However, there are relatively few techniques with the ability to directly 3D print patterns of functional materials with sub-micron resolution. In this study, we demonstrate the use of additive electrohydrodynamic jet (e-jet) printing with an average line width of 312 nm, which acts as an inhibitor for area-selective atomic layer deposition (AS-ALD) of a range of metal oxides. We also demonstrate subtractive e-jet printing with solvent inks that dissolve polymer inhibitor layers in specific regions, which enables localized AS-ALD within those regions. The chemical selectivity and morphology of e-jet patterned polymers towards binary and ternary oxides of ZnO, Al2O3, and SnO2 were quantified using X-ray photoelectron spectroscopy, atomic force microscopy, and Auger electron spectroscopy. This approach enables patterning of functional oxide semiconductors, insulators, and transparent conducting oxides with tunable composition, Å-scale control of thickness, and sub-µm resolution in the x-y plane. Using a combination of additive and subtractive e-jet printing with AS-ALD, a thin-film transistor was fabricated using zinc-tin-oxide for the semiconductor channel and aluminum-doped zinc oxide as the source and drain electrical contacts. In the future, this technique can be used to print integrated electronics with sub-micron resolution on a variety of substrates.

3.
Nanoscale ; 12(32): 16917-16927, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32766658

RESUMEN

Along with the increasing interest in MoS2 as a promising electronic material, there is also an increasing demand for nanofabrication technologies that are compatible with this material and other relevant layered materials. In addition, the development of scalable nanofabrication approaches capable of directly producing MoS2 device arrays is an imperative task to speed up the design and commercialize various functional MoS2-based devices. The desired fabrication methods need to meet two critical requirements. First, they should minimize the involvement of resist-based lithography and plasma etching processes, which introduce unremovable contaminations to MoS2 structures. Second, they should be able to produce MoS2 structures with in-plane or out-of-plane edges in a controlled way, which is key to increase the usability of MoS2 for various device applications. Here, we introduce an inkjet-defined site-selective (IDSS) method that meets these requirements. IDSS includes two main steps: (i) inkjet printing of microscale liquid droplets that define the designated sites for MoS2 growth, and (ii) site-selective growth of MoS2 at droplet-defined sites. Moreover, IDSS is capable of generating MoS2 with different structures. Specifically, an IDSS process using deionized (DI) water droplets mainly produces in-plane MoS2 features, whereas the processes using graphene ink droplets mainly produce out-of-plane MoS2 features rich in exposed edges. Using out-of-plane MoS2 structures, we have demonstrated the fabrication of miniaturized on-chip lithium ion batteries, which exhibit reversible lithiation/delithiation capacity. This IDSS method could be further expanded as a scalable and reliable nanomanufacturing method for generating miniaturized on-chip energy storage devices.

4.
ACS Appl Mater Interfaces ; 11(46): 43573-43580, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31702884

RESUMEN

Interfacial fracture and delamination of polymer interfaces can play a critical role in a wide range of applications, including fiber-reinforced composites, flexible electronics, and encapsulation layers for photovoltaics. However, owing to the low surface energy of many thermoplastics, adhesion to dissimilar material surfaces remains a critical challenge. In this work, we demonstrate that surface treatments using atomic layer deposition (ALD) on poly(methyl methacrylate) (PMMA) and fluorinated ethylene propylene (FEP) lead to significant increases in surface energy, without affecting the bulk mechanical response of the thermoplastic. After ALD film growth, the interfacial toughness of the PMMA-epoxy and FEP-epoxy interfaces increased by factors of up to 7 and 60, respectively. These results demonstrate the ability of ALD to engineer the adhesive properties of chemically inert surfaces. However, in the present case, the interfacial toughness was observed to decrease significantly with an increase in humidity. This was attributed to the phenomenon of stress-corrosion cracking associated with the reaction between Al2O3 and water and might have a significant implication for the design of these tailored interfaces.

5.
ACS Appl Mater Interfaces ; 10(5): 4614-4621, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29337532

RESUMEN

Morpho sulkowskyi butterfly wings contain naturally occurring hierarchical nanostructures that produce structural coloration. The high aspect ratio and surface area of these wings make them attractive nanostructured templates for applications in solar energy and photocatalysis. However, biomimetic approaches to replicate their complex structural features and integrate functional materials into their three-dimensional framework are highly limited in precision and scalability. Herein, a biotemplating approach is presented that precisely replicates Morpho nanostructures by depositing nanocrystalline ZnO coatings onto wings via low-temperature atomic layer deposition (ALD). This study demonstrates the ability to precisely tune the natural structural coloration while also integrating multifunctionality by imparting photocatalytic activity onto fully intact Morpho wings. Optical spectroscopy and finite-difference time-domain numerical modeling demonstrate that ALD ZnO coatings can rationally tune the structural coloration across the visible spectrum. These structurally colored photocatalysts exhibit an optimal coating thickness to maximize photocatalytic activity, which is attributed to trade-offs between light absorption and catalytic quantum yield with increasing coating thickness. These multifunctional photocatalysts present a new approach to integrating solar energy harvesting into visually attractive surfaces that can be integrated into building facades or other macroscopic structures to impart aesthetic appeal.


Asunto(s)
Nanoestructuras , Biomimética , Catálisis , Color , Análisis Espectral
6.
ACS Nano ; 11(1): 478-489, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28114759

RESUMEN

Superomniphobic surfaces display contact angles of θ* > 150° and low contact angle hysteresis with virtually all high and low surface tension liquids. The introduction of hierarchical scales of texture can increase the contact angles and decrease the contact angle hysteresis of superomniphobic surfaces by reducing the solid-liquid contact area. Thus far, it has not been possible to fabricate superomniphobic surfaces with three or more hierarchical scales of texture where the size, spacing, and angular orientation of features within each scale of texture can be independently varied and controlled. Here, we report a method for tunable control of geometry in hyperbranched ZnO nanowire (NW) structures, which in turn enables the rational design and fabrication of superomniphobic surfaces. Branched NWs with tunable density and orientation were grown via a sequential hydrothermal process, in which atomic layer deposition was used for NW seeding, disruption of epitaxy, and selective blocking of NW nucleation. This approach allows for the rational design and optimization of three-level hierarchical structures, in which the geometric parameters of each level of hierarchy can be individually controlled. We demonstrate the coupled relationships between geometry and contact angles for a variety of liquids, which is supported by mathematical models. The highest performing superomniphobic surface was designed with three levels of hierarchy and achieved the following advancing/receding contact angles with water 172°/170°, hexadecane 166°/156°, octane 162°/145°, and heptane 160°/130°.

7.
ACS Cent Sci ; 2(11): 790-801, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27924307

RESUMEN

Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. However the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to morphology evolution through the use of operando video microscopy. A custom-designed visualization cell was developed to enable operando synchronized observation of Li metal electrode morphology and electrochemical behavior during cycling. A mechanistic understanding of the complex behavior of these electrodes is gained through correlation with continuum-scale modeling, which provides insight into the dominant surface kinetics. This work provides a detailed explanation of (1) when dendrite nucleation occurs, (2) how those dendrites evolve as a function of time, (3) when surface pitting occurs during Li electrodissolution, (4) kinetic parameters that dictate overpotential as the electrode morphology evolves, and (5) how this understanding can be applied to evaluate electrode performance in a variety of electrolytes. The results provide detailed insight into the interplay between morphology and the dominant electrochemical processes occurring on the Li electrode surface through an improved understanding of changes in cell voltage, which represents a powerful new platform for analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...