Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Orthop Res ; 39(9): 2048-2061, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33104243

RESUMEN

The Wnt pathway is upregulated in tendinopathy, affecting inflammation and tenocyte differentiation. Given its potential role in tendinopathy, this signaling pathway may be a relevant target for treatment. The current study examined the therapeutic potential of SM04755, a topical, small-molecule Wnt pathway inhibitor, for the treatment of tendinopathy using in vitro assays and animal models. In vitro, SM04755 decreased Wnt pathway activity, induced tenocyte differentiation, and inhibited catabolic enzymes and pro-inflammatory cytokines in human mesenchymal stem cells, rat tendon-derived stem cells, and human peripheral blood mononuclear cells. Evaluation of the mechanism of action of SM04755 by biochemical profiling and computational modeling identified CDC-like kinase 2 (CLK2) and dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) as molecular targets. CLK and DYRK1A inhibition by siRNA knockdown or pharmacological inhibition induced tenocyte differentiation and reduced tenocyte catabolism. In vivo, topically applied SM04755 showed therapeutically relevant exposure in tendons with low systemic exposure and no detectable toxicity in rats. Moreover, SM04755 showed reduced tendon inflammation and evidence of tendon regeneration, decreased pain, and improved weight-bearing function in rat collagenase-induced tendinopathy models compared with vehicle control. Together, these data demonstrate that CLK2 and DYRK1A inhibition by SM04755 resulted in Wnt pathway inhibition, enhanced tenocyte differentiation and protection, and reduced inflammation. SM04755 has the potential to benefit symptoms and modify disease processes in tendinopathy.


Asunto(s)
Tendinopatía , Vía de Señalización Wnt , Animales , Inflamación , Leucocitos Mononucleares , Ratas , Tendinopatía/tratamiento farmacológico , Tendinopatía/metabolismo , Tendones
2.
Cancer Lett ; 473: 186-197, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31560935

RESUMEN

The Wnt/ß-catenin signaling pathway is aberrantly activated in colorectal (CRC) and many other cancers, and novel strategies for effectively targeting it may be needed due to its complexity. In this report, SM08502, a novel small molecule in clinical development for the treatment of solid tumors, was shown to reduce Wnt pathway signaling and gene expression through potent inhibition of CDC-like kinase (CLK) activity. SM08502 inhibited serine and arginine rich splicing factor (SRSF) phosphorylation and disrupted spliceosome activity, which was associated with inhibition of Wnt pathway-related gene and protein expression. Additionally, SM08502 induced the generation of splicing variants of Wnt pathway genes, suggesting that its mechanism for inhibition of gene expression includes effects on alternative splicing. Orally administered SM08502 significantly inhibited growth of gastrointestinal tumors and decreased SRSF phosphorylation and Wnt pathway gene expression in xenograft mouse models. These data implicate CLKs in the regulation of Wnt signaling and represent a novel strategy for inhibiting Wnt pathway gene expression in cancers. SM08502 is a first-in-class CLK inhibitor being investigated in a Phase 1 clinical trial for subjects with advanced solid tumors (NCT03355066).


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Factores de Empalme Serina-Arginina/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Vía de Señalización Wnt/efectos de los fármacos , Empalme Alternativo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Humanos , Concentración 50 Inhibidora , Ratones , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Ratas , Neoplasias Gástricas/patología , Vía de Señalización Wnt/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
PLoS One ; 12(6): e0178202, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28582426

RESUMEN

Gold nanoparticles are predominantly used in diagnostics, therapeutics and biomedical applications. The present study has been designed to synthesize differently capped gold nanoparticles (AuNps) by a simple, one-step, room temperature procedure and to evaluate the potential of these AuNps for biomedical applications. The AuNps are capped with glucose, 2-deoxy-D-glucose (2DG) and citrate using different reducing agents. This is the first report of synthesis of 2DG-AuNp by the simple room temperature method. The synthesized gold nanoparticles are characterized with UV-Visible Spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and selected area electron diffraction (SAED), Dynamic light scattering (DLS), and Energy-dispersive X-ray spectroscopy (SEM-EDS). Surface-enhanced Raman scattering (SERS) study of the synthesized AuNps shows increase in Raman signals up to 50 times using 2DG. 3-(4, 5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay has been performed using all the three differently capped AuNps in different cell lines to assess cytotoxcity if any, of the nanoparticles. The study shows that 2DG-AuNps is a better candidate for theranostic application.


Asunto(s)
Desoxiglucosa/química , Glucosa/química , Oro/química , Nanopartículas del Metal/química , Nanomedicina Teranóstica/métodos , Supervivencia Celular/efectos de los fármacos , Ácido Cítrico/química , Oro/farmacología , Células HCT116 , Células HeLa , Células Hep G2 , Humanos , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula
4.
J Org Chem ; 64(13): 4697-4704, 1999 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-11674542

RESUMEN

Indolo[2,3-a]pyrrolo[3,4-c]carbazoles were isolated from nature, e.g., from low plants, especially fungi, as structurally rare natural substances. Responsible for naming and also the most important representative of this type is staurosporine (1), isolated from Streptomyces staurosporeus, and its aglycon (2), also known as staurosporinone or K-252c. 3,4-Disubstituted pyrrolidin-2-ones, a group of compounds with many interesting biological properties are related to staurosporinone. The most important property is the inhibition of protein kinase C (PKC), so that this antiproliferative agent can interfere with the cell cycle. The synthetic strategy, developed by us, allows the synthesis of pyrrolidin-2-ones by an intermolecular Michael addition, starting from nitroethene derivatives and substituted acetate Michael donors. With this method also enantioselective syntheses can be carried out using chiral auxiliaries. After reduction of the nitro group and subsequent lactamization, the lactam partial structure, which is essential for the biological activity, is obtained. Besides indole substituents, which were used for the synthesis of staurosporinone, substituted indole-, phenyl-, and pyridyl- as well as enantiomerically pure (S)-proline derivatives were used. Here, considerably high diastereoselectivity and enantioselectivity ((S)-pyrrolidine) could be detected. Just like the total synthesis of staurosporinone within three steps, the easiest and shortest approach reported up to now, with good to moderate yields, this sequence allows highly diastereoselective syntheses, which open the easy access to a new family of compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...