Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lung Cancer ; 188: 107449, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38184958

RESUMEN

BACKGROUND: Sideroflexin 1 (SFXN1) has been discovered as a novel tumor marker for lung adenocarcinoma, but data on its importance in the development of lung adenocarcinoma is still limited. This study evaluated the correlation between SFXN1 and parameters related to 18F-flurodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT), and further explored the role of SFXN1 in the value-added and glycolytic processes of LUAD. METHOD: The expression and prognostic value of SFXN1 mRNA in LUAD were analyzed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) data base. Retrospective analysis of 18F-FDG PET imaging and metabolic parameters in 42 patients to explore the relationship between the expression of SFXN1 and glucose metabolism levels in lung adenocarcinoma and its clinical significance. H1975 cells were selected as the in vitro research object, and the biological effects of SFXN1 on LUAD were further elucidated through Edu proliferation assay, CCK8 activity assay, wound healing experiment, and cell flow cytometry. RESULT: SFXN1 is highly expressed in various tumors, including LUAD, and its high expression can serve as an independent predictor of overall survival in lung adenocarcinoma. In addition, the expression of SFXN1 in LUAD was significantly correlated with 18F-FDG PET/CT parameters: maximum and average standardized uptake values (SUVmax and SUVmean), as well as total lesion glycolysis (TLG) (rho = 0.574, 0.589, and 0.338, p < 0.05), which can predict the expression of SFXN1 with an accuracy of 0.934. In vitro functional experiments have shown that knocking down SFXN1 inhibits the proliferation and migration of LUAD cells, promotes cell apoptosis, and may inhibit tumor activity by regulating the expression of glycolytic related genes SLC2A1, HK2, GPI, ALDOA, GAPDH, ENO1, PKM, and LDHA. CONCLUSION: The overexpression of SFXN1 is closely related to FDG uptake, and SFXN1, as a promising prognostic biomarker, may mediate the development of LUAD through the glycolytic pathway.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Fluorodesoxiglucosa F18/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Pronóstico , Estudios Retrospectivos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/genética , Biomarcadores
2.
J Transl Med ; 20(1): 450, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195940

RESUMEN

BACKGROUND: The aim of this study was to determine the expression and function of heterogeneous nuclear ribonucleoprotein R (HNRNPR) in esophageal carcinoma (ESCA), the correlation between its expression and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computerized tomography scan (PET/CT)-related parameters. We also investigated whether 18F-FDG PET/CT can be used to predict the expression of HNRNPR in ESCA. METHODS: We analyzed patients with ESCA who underwent 18F-FDG PET/CT before surgery, and their tissues were stained with HNRNPR IHC. The associated parameters were derived using the 18F-FDG PET imaging data, and the correlation with the IHC score was evaluated. The Oncomine, TCGA, and GEO datasets were used to investigate HNRNPR expression in the pan- and esophageal cancers, as well as its relationship with N6-methyladenosine (m6A) modification and glycolysis. The R software, LinkedOmics, GeneMANIA, and StringOnline tools were used to perform GO/KEGG, GGI, and PPI analyses on the HNRNPR. RESULTS: HNRNPR is highly expressed in the majority of pan-cancers, including ESCA, and is associated with BMI, weight, and history of reflux in patients with ESCA. HNRNPR is somewhat accurate in predicting the clinical prognosis of ESCA. HNRNPR expression was positively correlated with SUVmax, SUVmean, and TLG in ESCA (p < 0.05). The combination of these three variables provides a strong predictive value for HNRNPR expression in ESCA. GO/KEGG analysis showed that HNRNPR played a role in the regulation of cell cycle, DNA replication, and the Fannie anemia pathway. The analysis of the TCGA and GEO data sets revealed a significant correlation between HNRNPR expression and m6A and glycolysis-related genes. GSEA analysis revealed that HNRNPR was involved in various m6A and glycolysis related-pathways. CONCLUSION: HNRNPR overexpression correlates with 18F-FDG uptake in ESCA and may be involved in the regulation of the cell cycle, m6A modification, and cell glycolysis. 18F-FDG PET/CT-related parameters can predict the diagnostic accuracy of HNRNPR expression in ESCA.


Asunto(s)
Carcinoma , Neoplasias Esofágicas , Biomarcadores/metabolismo , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/genética , Fluorodesoxiglucosa F18/metabolismo , Glucólisis/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Pronóstico , Radiofármacos , Estudios Retrospectivos , Carga Tumoral
3.
J Cancer ; 12(19): 5838-5847, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475997

RESUMEN

Background: We sought to investigate whether the expression of the gene EIF2S2 is related to 18F-FDG PET/CT metabolic parameters in patients with colorectal cancer (CRC). Materials and methods: The expression of EIF2S2 in CRC and its relationship with clinicopathological features were obtained through the ONCOMINE, UALCAN and GEPIA databases. EIF2S2 and GLUT1 expression were examined by immunohistochemistry in 42 CRC patients undergoing preoperative PET-CT examination. Spearman correlation analysis was used to assess the relationship between EIF2S2 and GLUT1 levels and clinical parameters. Correlation analysis between EIF2S2 and Reactome-Glycolysis signatures was performed using GEPIA2. We describe the effect of EIF2S2 knockdown on lactate production and the mRNA levels of glycolysis-related genes in human colon cancer SW480 cells. Results: Immunohistochemistry revealed an upregulation of EIF2S2 protein expression in tumor tissues of colorectal cancer patients, which is consistent with the significant upregulation of EIF2S2 transcript levels in the database. These colorectal cancer patients included 24 cases of colon cancer and 18 cases of rectal cancer, ranging in age from 31 to 78 years. The transcription was significantly related to histological subtypes and TP53 mutations (P <0.05). The value of SUVmax in CRC significantly correlated with the expression of EIF2S2 (rho = 0.462, P <0.01). Although SUVmax and SUVmean was not correlate with the expression of GLUT1 (P <0.05), a significant correlation was observed between the expression of GLUT1 and the volumetric PET parameters, such as MTV and TLG (P < 0.01). GLUT1 expression in CRC was positively correlated with EIF2S2 status (rho = 0.470, P <0.01). In SW480 cells, RNAi-mediated depletion of EIF2S2 inhibited lactic acid production (P <0.05) and SLC2A1, SLC2A3, SLC2A10, HK2, PKM2, LDHA mRNA level (P <0.01). Conclusions: Primary CRC FDG uptake is strongly associated with the overexpression of EIF2S2, and EIF2S2 may promote glycolysis in CRC by mediating GLUT1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...