Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 460(Pt 1): 140510, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39033639

RESUMEN

Tea drinking impacts aging and aging-related diseases. However, knowledge of anti-aging molecules other than the major catechins in complex tea extracts remains limited. Here we used Caenorhabditis elegans to analyze the longevity effects of tea extracts and constituents comprehensively. We found that the hot water extract of green tea prolonged lifespan and heathspan. Further, the MeOH fraction prolonged lifespan significantly longer than other fractions. Correlation analysis between mass spectroscopic data and anti-aging activity suggests that ester-type catechins (ETCs) are the major anti-aging components, including 4 common ETCs, 6 phenylpropanoid-substituted ester-type catechins (PSECs), 5 cinnamoylated catechins (CCs), 7 ester-type flavoalkaloids (ETFs), and 4 cinnamoylated flavoalkaloids (CFs). CFs (200 µM) are the strongest anti-aging ETCs (with the longest 73% lifespan extension). Green tea hot water extracts and ETCs improved healthspan by enhancing stress resistance and reducing ROS accumulation. The mechanistic study suggests that they work by multiple pathways. Moreover, ETCs modulated gut microbial homeostasis, increased the content of short-chain fatty acids, and reduced fat content. Altogether, our study provides new evidence for the anti-aging benefits of green tea and insights into a deep understanding of the chemical truth and multi-target mechanism.

2.
Food Res Int ; 191: 114740, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059930

RESUMEN

To explore the influence of tea trichomes on the quality of white tea, liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS), and headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to identify non-volatile and volatile compounds white tea without trichomes (WTwt) and pure trichomes (PT). It was found that the bitter and astringent compounds, caffeine (CAF), epigallocatechin gallate (EGCG), epicatechin gallate (ECG) and flavonol glycosides, were mainly enriched in the WTwt, with 16.3-fold, 47.1-fold and 28.7-fold decrease in CAF and EGCG and ECG, respectively, and the content of these compounds in PT were lower than the taste thresholds. In PT, kaempferol-3-O-(p-coumaroyl)-glucoside and kaempferol-3-O-(di-p-coumaroyl)-glucoside were non-volatile marker compounds, and decanal was significant aroma contributor with rOAV = 250.86. Moreover, the compounds in trichomes mainly contributed to the fruity and floral aroma of white tea, among which benzyl alcohol, (E)-geranylacetone, decanal, dodecanal and 6-methyl-5-hepten-2-one were the crucial aroma components, which were 2.1, 1.7, 1.8, 1.4 and 2.2 times as much as the WTwt in the PT, respectively. In conclusion, trichomes can improve the quality of white tea by reducing the bitterness and astringency, increasing the umami, as well as enhancing the fruity and floral aromas.


Asunto(s)
Camellia sinensis , Catequina , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Gusto , , Tricomas , Cromatografía de Gases y Espectrometría de Masas/métodos , Té/química , Metabolómica/métodos , Tricomas/química , Catequina/análisis , Catequina/análogos & derivados , Camellia sinensis/química , Microextracción en Fase Sólida , Humanos , Compuestos Orgánicos Volátiles/análisis , Cafeína/análisis , Cromatografía Liquida/métodos , Odorantes/análisis , Masculino , Adulto , Cromatografía Líquida con Espectrometría de Masas
3.
Food Res Int ; 190: 114638, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945627

RESUMEN

Tea trichomes were regarded as an essential evaluation index for reflecting tea flavor quality in terms of aroma and influence on infusion color. This study reveals the impact of golden oxidized trichomes on the color, volatile and non-volatile metabolites of black teas through comparative metabolomics combined quantitative analysis on hongbiluo (trichomes-deficiency black teas), hongjinluo (trichomes-rich black teas), and trichomes (from hongjinluo). Forty-six volatile components were detected using headspace solid-phase microextraction gas chromatography-mass spectrometry, while the results suggested that the contribution of trichomes to black teas is limited. A total of 60 marker non-volatile compounds were identified, including catechins, catechin oxidation products, flavonoid glycosides, organic acids, hydrolysable tannins and amino acids. Notably, p-coumaroyl-kaempferol glucosides, and catechin dimers demonstrated high levels in independent trichomes and showed a positive correlation with the brightness and yellow hue of black tea infusions, specifically kaempferol 3-O-di-(p-coumaroyl)-hexoside. Furthermore, results from fractional extraction analysis of separated trichomes provided that N-ethyl-2-pyrrolidinone-substituted epicatechin gallates, acylated kaempferol glycosides, and chromogenic catechins dimers, such as theaflavins, were primary color contributors in oxidized trichomes. Especially, we found that epicatechin gallate (ECG) and its derivates, 3'-O-methyl-ECG and N-ethyl-2-pyrrolidinone-substituted ECG, highly accumulated in trichomes, which may be associated with the varieties of hongbiluo and hongjinluo black teas. Eventually, addition tests were applied to verify the color contribution of trichome mixtures. Our findings employed comprehensive information revealing that golden oxidized trichomes contributed significantly to the brightness and yellow hue of black tea infusion, but their contribution to the aroma and metabolic profile is limited. These findings may contribute to the effective modulation of the infusion color during black tea production by regulating the proportion of tea trichomes or screening trichomes-rich or deficiency varieties.


Asunto(s)
Camellia sinensis , Color , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Oxidación-Reducción , , Tricomas , Compuestos Orgánicos Volátiles , Metabolómica/métodos , Té/química , Camellia sinensis/química , Compuestos Orgánicos Volátiles/análisis , Tricomas/química , Tricomas/metabolismo , Catequina/análisis , Catequina/análogos & derivados , Catequina/metabolismo , Microextracción en Fase Sólida , Hojas de la Planta/química , Metaboloma , Flavonoides/análisis
4.
Food Res Int ; 184: 114266, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609242

RESUMEN

The capacity differences of seven catechin monomers to produce colors after treating with catechin-free extract were investigated. After 240-min reaction, only (-)-epicatechin (EC) and (+)-catechin (C) presented obvious luminous red color with L* values of 63.32-71.73, a* values of 37.13-46.44, and b* values of 65.64-69.99. Meanwhile, the decrease rate of EC and C was 43.52 %-50.35 %, which were significantly lower than those of other catechin monomers (85.91 %-100 %). The oxidized products of catechin monomers were analyzed by ultra-high performance liquid chromatography-quadrupole-time of flight-mass spectrometry coupled with diode array detector, wherein dehydro-dimers and -trimers (oxidative coupling products of catechins' A-B ring) were found to be the major chromogenic compounds of EC and C. Additionally, the antioxidant capacity of catechin monomers only decreased after 30-min reaction, while along with further enzymatic reaction, catechin monomers presented comparable oxyradical scavenging ability (e.g., the DPPH inhibitory rates of catechin monomers were in the range of 24.42 %-50.77 %) to vitamin C (positive control, DPPH inhibitory rate was 27.66 %). Meanwhile, the inhibitory effects of most catechin monomers on α-glucosidase were enhanced in different degrees. These results provided basis for the development of enzymatically-oxidized catechin monomers as functional food color additives.


Asunto(s)
Catequina , Colorimetría , Espectrometría de Masas , Cromatografía Líquida con Espectrometría de Masas , Antioxidantes
5.
J Agric Food Chem ; 72(7): 3695-3706, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324412

RESUMEN

Novel N-ethy-2-pyrrolidinone-substituted flavonols, myricetin alkaloids A-C (1-3), quercetin alkaloids A-C (4a, 4b, and 5), and kaempferol alkaloids A and B (6 and 7), were prepared from thermal reaction products of myricetin, quercetin, kaempferol─l-theanine, respectively. We used HPLC-ESI-HRMS/MS to detect 1-7 in 14 cultivars of green tea and found that they were all present in "Shuchazao," "Longjing 43", "Fudingdabai", and "Zhongcha 108" green teas. The structures of 1-4 and 6 were determined by extensive 1D and 2D NMR spectroscopies. These flavonol alkaloids along with their skeletal flavonols were assessed for anti-Alzheimer's disease effect based on molecular docking, acetylcholinesterase inhibition, and the transgenic Caenorhabditis elegans CL4176 model. Compound 7 strongly binds to the protein amyloid ß (Aß1-42) through hydrogen bonds (BE: -9.5 kcal/mol, Ki: 114.3 nM). Compound 3 (100 µM) is the strongest one in significantly extending the mean lifespan (13.4 ± 0.5 d, 43.0% promotion), delaying the Aß1-42-induced paralysis (PT50: 40.7 ± 1.9 h, 17.1% promotion), enhancing the locomotion (140.0% promotion at 48 h), and alleviating glutamic acid (Glu)-induced neurotoxicity (153.5% promotion at 48 h) of CL4176 worms (p < 0.0001).


Asunto(s)
Alcaloides , Enfermedad de Alzheimer , Animales , Té/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/farmacología , Caenorhabditis elegans/genética , Quercetina/farmacología , Acetilcolinesterasa , Simulación del Acoplamiento Molecular , Alcaloides/farmacología , Alcaloides/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Flavonoles/farmacología
6.
Food Chem ; 413: 135643, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773353

RESUMEN

Methylation is a common structural modification of catechins in tea, which can improve the bioavailability of catechins. Flavoalkaloids are catechin derivatives with a nitrogen containing five-membered ring at the C-6 or C-8 position. Here we isolated three new methylated flavoalkaloids from Echa 1 green tea (Camellia sinensis cv. Echa 1) and synthesized another four new methylated flavoalkaloids. The structures of the new ester-type methylated catechins (etmc)-pyrrolidinone A-G (1-7) were elucidated by various spectroscopic techniques, including nuclear magnetic resonance (NMR), optical rotation, infrared, UV-vis, experimental and calculated circular dichroism (CD) spectra, and high-resolution mass. Among them, 6 and 7 showed the strongest α-glucosidase inhibitory activity and significantly lowered lipid content of Caenorhabditis elegans with 73.50 and 67.39% inhibition rate, respectively. Meanwhile, 6 and 7 also exhibited strong antioxidant activity in vitro and stress resistance to heat, oxidative stress, and UV irradiation in nematodes.


Asunto(s)
Camellia sinensis , Catequina , Animales , Té/química , Caenorhabditis elegans , Camellia sinensis/química , Antioxidantes
7.
Food Funct ; 13(18): 9299-9310, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-35968754

RESUMEN

Green tea polyphenols show positive effects on human health and longevity. However, knowledge of the antiaging properties of green tea is limited to the major catechin epigallocatechin gallate (EGCG). The search for new ingredients in tea with strong antiaging activity deserves further study. Here we isolated and identified two new catechins from Zijuan green tea, named zijuanin E (1) and zijuanin F (2). Their structures were identified by extensive high-resolution mass spectroscopy (HR-MS), nuclear magnetic resonance (NMR), ultraviolet-vis (UV), infrared (IR) and circular dichroism (CD) spectroscopic analyses, and their 13C NMR and CD data were calculated. We used the nematode Caenorhabditis elegans (C. elegans) to analyze the health benefits and longevity effects of 1 and 2. Compounds 1 and 2 (100 µM) remarkably prolonged the lifespan of C. elegans by 67.2% and 56.0%, respectively, delaying the age-related decline of phenotypes, enhancing stress resistance, and reducing ROS and lipid accumulation. Furthermore, 1 and 2 did not affect the lifespan of daf-16, daf-2, sir-2.1, and skn-1 mutant worms, suggesting that they might work via the insulin/IGF and SKN-1/Nrf2 signaling pathways. Meanwhile, 1 and 2 also exhibited strong antioxidant activity in vitro. Surface plasmon resonance (SPR) evidence suggests that zijuanins E and F have strong human serum albumin (HSA) binding ability. Together, zijuanins E and F represent a new valuable class of tea components that promote healthspan and could be developed as potential dietary therapies against aging.


Asunto(s)
Proteínas de Caenorhabditis elegans , Catequina , Animales , Antioxidantes/farmacología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catequina/química , Insulina/metabolismo , Lípidos/farmacología , Longevidad , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Albúmina Sérica Humana/metabolismo , Transducción de Señal , Té/química
8.
J Agric Food Chem ; 70(1): 136-148, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34964344

RESUMEN

Flavoalkaloids are a unique class of compounds in tea, most of which have an N-ethyl-2-pyrrolidinone moiety substituted at the A ring of a catechin skeleton. 1-Ethyl-5-hydroxy-pyrrolidone, a decomposed product of theanine, was supposed to be the key intermediate to form tea flavoalkaloids. However, we have also detected another possible theanine intermediate, 1-ethyl-5-oxopyrrolidine-2-carboxylic acid, and speculated if there are related conjugated catechins. Herein, four novel spiro-flavoalkaloids with a spiro-γ-lactone structural moiety were isolated from Yingde green tea (Camellia sinensis var. assamica) in our continuing exploration of new chemical constituents from tea. The structures of the new compounds, spiro-flavoalkaloids A-D (1-4), were further elucidated by extensive nuclear magnetic resonance (NMR) spectroscopy together with the calculated 13C NMR, IR, UV-vis, high-resolution mass, optical rotation, experimental, and calculated circular dichroism spectra. We also provided an alternative pathway to produce these novel spiro-flavoalkaloids. Additionally, their α-glucosidase inhibitory activities were determined with IC50 values of 3.34 (1), 5.47 (2), 22.50 (3), and 15.38 (4) µM. Docking results revealed that compounds 1 and 2 mainly interacted with residues ASP-215, ARG-442, ASP-352, GLU-411, HIS-280, ARG-315, and ASN-415 of α-glucosidase through hydrogen bonds. The fluorescence intensity of α-glucosidase could be quenched by compounds 1 and 2 in a static style.


Asunto(s)
Alcaloides/farmacología , Camellia sinensis , Inhibidores de Glicósido Hidrolasas/farmacología , Té/química , Camellia sinensis/química , Catequina , alfa-Glucosidasas
9.
Phytomedicine ; 96: 153853, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34799184

RESUMEN

BACKGROUND AND PURPOSE: Previous studies suggest that major Camellia sinensis (tea) catechins can inhibit 3-chymotrypsin-like cysteine protease (3CLpro), inspiring us to study 3CLpro inhibition of the recently discovered catechins from tea by our group. METHODS: Autodock was used to dock 3CLpro and 16 tea catechins. Further, a 3CLpro activity detection system was used to test their intra and extra cellular 3CLpro inhibitory activity. Surface plasmon resonance (SPR) was used to analyze the dissociation constant (KD) between the catechins and 3CLpro. RESULTS: Docking data suggested that 3CLpro interacted with the selected 16 catechins with low binding energy through the key amino acid residues Thr24, Thr26, Asn142, Gly143, His163, and Gln189. The selected catechins other than zijuanin D (3) and (-)-8-(5''R)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (11) can inhibit 3CLpro intracellularly. The extracellular 3CLpro IC50 values of (-)-epicatechin 3-O-caffeoate (EC-C, 1), zijuanin C (2), etc-pyrrolidinone C and D (6), etc-pyrrolidinone A (9), (+)-gallocatechin gallate (GCG), and (-)-epicatechin gallate (ECG) are 1.58 ± 0.21, 41.2 ± 3.56, 0.90 ± 0.03, 46.71 ± 10.50, 3.38 ± 0.48, and 71.78 ± 8.36 µM, respectively. The KD values of 1, 6, and GCG are 4.29, 3.46, and 3.36 µM, respectively. CONCLUSION: Together, EC-C (1), etc-pyrrolidinone C and D (6), and GCG are strong 3CLpro inhibitors. Our results suggest that structural modification of catechins could be conducted by esterificating the 3-OH as well as changing the configuration of C-3, C-3''' or C-5''' to discover strong SARS-CoV-2 inhibitors.


Asunto(s)
COVID-19 , Camellia sinensis , Catequina , Catequina/análisis , Catequina/farmacología , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2 ,
10.
J Agric Food Chem ; 69(16): 4827-4839, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33848156

RESUMEN

Tea is an important beverage source of dietary polyphenols and well known for containing phenolic structure diversity. A series of phenylpropanoid-substituted catechins, flavonols, flavan-3-hexoside, and proanthocyanidin are present in different herbs with various biological activities, inspiring our exploration of phenylpropanoid-substituted ester type of catechins (PSECs) due to the enrichment of galloylated catechins in tea. In this study, we used a guiding-screening-location-isolation integrated route including creating a hypothesized PSEC dataset, MS/MS data acquiring, construction of molecular networks, and traditional column chromatography and preliminarily identified 14 PSECs by MS/MS spectrum. Two of these PSECs were further purified and elucidated by NMR and CD spectra. Further MS detection in tea products and fresh leaves suggests that the production of the two new compounds was enhanced during tea processing. The synthesis mechanism was proposed to obtain these types of components for further investigation on their roles in human health protection. This study provides an example for the exploration of new functional ingredients from food sources guided by MS/MS data-based networking, and also new insights into the reaction mechanism to form new catechin conjugates among polyphenols in green tea.


Asunto(s)
Camellia sinensis , Catequina , Ésteres , Humanos , Polifenoles/análisis , Espectrometría de Masas en Tándem ,
11.
Food Chem ; 339: 127864, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858385

RESUMEN

Flavoalkaloids have been found from tea. However, there is limited information about their content in different teas. Herein, 51 tea samples were screened for flavoalkaloid content. Twelve teas with relatively higher contents of flavoalkaloids were further quantified by UPLC-TOF-MS/MS. The cultivars Yiwu and Bulangshan had the highest levels, with total flavoalkaloid contents of 3063 and 2727 µg g-1, respectively. Each of the six flavoalkaloids were at levels > 198 µg g-1 in these cultivars. Of the flavoalkaloids, etc-pyrrolidinone A had the highest content in the teas, reaching 835 µg g-1 in Yiwu. The content of the flavoalkaloids varied among tea cultivars and with processing procedures, particularly heating. The potential of using flavoalkaloids to discriminate grades of Keemun black tea was studied and discussed. The teas identified in this work with high levels of flavoalkaloids can be used in the future to study the mechanisms by which flavoalkaloids are synthesized in tea.


Asunto(s)
Alcaloides/análisis , Alcaloides/química , Camellia sinensis/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Manipulación de Alimentos
12.
J Agric Food Chem ; 68(30): 7995-8007, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32618197

RESUMEN

Dark teas are prepared by a microbial fermentation process. Flavan-3-ol B-ring fission analogues (FBRFAs) are some of the key bioactive constituents that characterize dark teas. The precursors and the synthetic mechanism involved in the formation of FBRFAs are not known. Using a unique solid-state fermentation system with ß-cyclodextrin inclusion complexation as well as targeted chromatographic isolation, spectroscopic identification, and Feature-based Molecular Networking on the Global Natural Products Social Molecular Networking web platform, we reveal that dihydromyricetin and the FBRFAs, including teadenol A and fuzhuanin A, are derived from epigallocatechin gallate upon exposure to fungal strains isolated from Fuzhuan brick tea. In particular, the strains from subphylum Pezizomycotina were key drivers for these B-/C-ring oxidation transformations. These are the same transformations seen during the fermentation process of dark teas. These discoveries set the stage to enrich dark teas and other food products for these health-promoting constituents.


Asunto(s)
Camellia sinensis/metabolismo , Catequina/análogos & derivados , Bacterias/metabolismo , Camellia sinensis/química , Camellia sinensis/microbiología , Catequina/química , Catequina/metabolismo , Fermentación , Flavonoides/química , Flavonoides/metabolismo , Flavonoles/química , Flavonoles/metabolismo , Manipulación de Alimentos , Microbiología de Alimentos , Té/química
13.
J Agric Food Chem ; 68(10): 3140-3148, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053361

RESUMEN

3-O-Cinnamoylepicatechin (1) was synthesized along with four flavoalkaloids, (-)-6-(5‴S)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (2), (-)-6-(5‴R)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (3), (-)-8-(5‴S)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (4), and (-)-8-(5‴R)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (5) via esterification of epicatechin followed by phenolic Mannich reaction of 1 with theanine in the presence of heat. The new compounds 1-5 were detected in leaves of three tea cultivars, Fuding-Dabai, Huangjingui, and Zimudan with the help of ultra-performance liquid chromatography hyphenated with a photodiode array detector and electrospray ionization high-resolution mass spectrometry (UPLC-PDA-ESI-HRMS), suggesting that they are naturally occurring in tea leaves. The structures of the novel natural products were characterized by one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) and mass spectroscopy. Compounds 1-5 were then evaluated for their acetylcholinesterase (AChE) inhibitory effect (IC50 = 0.12-1.02 µM). The availability of the synthesized epicatechin derivatives 1-5 via a synthetic route enabled the first unequivocal identification of these derivatives as tea secondary metabolites and made it possible to determine their content in the tea material as well as the diverse bioactivities.


Asunto(s)
Alcaloides/química , Camellia sinensis/química , Inhibidores de la Colinesterasa/química , Extractos Vegetales/química , Acetilcolinesterasa/química , Cromatografía Líquida de Alta Presión , Hojas de la Planta/química , Espectrometría de Masa por Ionización de Electrospray
14.
J Agric Food Chem ; 67(43): 11986-11993, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31593461

RESUMEN

Global Natural Product Social feature-based networking was applied to follow the phytochemicals, including nine flavonoid glycosides, six catechins, and three flavonols in Huangjinya green tea. Further, a new 8-O-4'-type neolignan glycoside, camellignanoside A (1), and 15 known compounds (2-16) were isolated through a variety of column chromatographies, and the structure was elucidated extensively by ultra performance liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry, 1H and 13C nuclear magnetic resonance, heteronuclear single-quantum correlation, heteronuclear multiple-bond correlation, 1H-1H correlation spectroscopy, rotating frame nuclear Overhauser effect spectroscopy, and Nuclear Overhauser effect spectroscopy, and circular dichroism spectroscopies. Compounds 1 and 2 showed acetylcolinesterase inhibition activity, with IC50 = 0.75 and 0.18 µM, respectively.


Asunto(s)
Camellia sinensis/química , Inhibidores de la Colinesterasa/química , Glicósidos/química , Lignanos/química , Extractos Vegetales/química , Acetilcolinesterasa/química , Cromatografía Líquida de Alta Presión , Humanos , Cinética , Estructura Molecular , Hojas de la Planta/química , Espectrometría de Masas en Tándem , Té/química
15.
J Agric Food Chem ; 67(17): 4831-4838, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969762

RESUMEN

Zijuan tea ( Camellia sinensis var. assamica), an anthocyanin-rich cultivar with purple leaves, is a valuable material for manufacturing tea with unique color and flavor. In this paper, four new phenylpropanoid substituted epicatechin gallates (pECGs), Zijuanins A-D (1-4), were isolated from Zijuan green tea by different column chromatography. Their structures were identified by extensive high resolution mass spectroscopy (HR-MS), nuclear magnetic resonance (NMR), and experimental and calculated circular dichroism (CD) spectroscopic analyses. Detection of the changes in fresh tea leaves collected from April to September and the final processed product by high performance liquid chromatography (HPLC)-HRMS suggested that production of compounds 1 and 2 may be enhanced by the processing procedure of Zijuan green tea. Additionally, 1-4 were proposed to be synthesized through interaction between the abundant secondary metabolite ECG and phenolic acids from tea leaves by two key steps of phenol-dienone tautomerism. 1 and 2 showed impressive activity in protecting SH-SY5Y cells against H2O2-induced damage at the concentration of 1.0 µM.


Asunto(s)
Camellia sinensis/química , Catequina/análogos & derivados , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Camellia sinensis/crecimiento & desarrollo , Catequina/química , Catequina/farmacología , China , Peróxido de Hidrógeno/toxicidad , Isomerismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Neuronas/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Estaciones del Año
16.
J Agric Food Chem ; 66(30): 7948-7957, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29976052

RESUMEN

Chinese Xi-Gui tea is one ancient cultivated variety of Camellia sinensis var. assamica. At present, it is used for producing expensive and elite tea in China. Five new flavoalkaloids, (-)-6-(5''' S)- N-ethyl-2-pyrrolidinone-epicatechin-3- O-gallate (ester-type catechins pyrrolidinone E, etc-pyrrolidinone E, 1), (-)-6-(5''' R)- N-ethyl-2-pyrrolidinone-epicatechin-3- O-gallate (etc-pyrrolidinone F, 2) (-)-8-(5''' S)- N-ethyl-2-pyrrolidinone-epicatechin-3- O-gallate (etc-pyrrolidinone G, 3a), (-)-8-(5''' S)- N-ethyl-2-pyrrolidinone-catechin-3- O-gallate (etc-pyrrolidinone I, 4a), (-)-8-(5''' R)- N-ethyl-2-pyrrolidinone-catechin-3- O-gallate (etc-pyrrolidinone J, 4b), and one new naturally occurring natural product (-)-8-(5''' R)- N-ethyl-2-pyrrolidinone-epicatechin-3- O-gallate (etc-pyrrolidinone H, 3b) together with the known flavoalkaloids etc-pyrrolidinones A-D (5, 6, 7a, and 7b) were detected and isolated from Xi-Gui green tea. Their structures were identified by comprehensive NMR spectroscopic analyses. Absolute configurations of 1-3 were established by comparison of the CD analyses with epicatechin-3- O-gallate (ECG). Compounds 1-4 were evaluated for their protection against high glucose induced cell senescence on human umbilical vein endothelia cells (HUVECs) and showed significant protection effects ( p < 0.01) at both 1.0 and 10 µM. A discussion on the possible evolution of tea plants divergent from related food plants on the basis of phytochemical view is also provided.


Asunto(s)
Camellia sinensis/química , Extractos Vegetales/química , Pirrolidinonas/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Extractos Vegetales/farmacología , Pirrolidinonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA