Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(8): 086902, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38457719

RESUMEN

We have measured the flexophotovoltaic effect of single crystals of halide perovskites MAPbBr_{3} and MAPbI_{3}, as well as the benchmark oxide perovskite SrTiO_{3}. For halide perovskites, the flexophotovoltaic effect is found to be orders of magnitude larger than for SrTiO_{3}, and indeed large enough to induce photovoltages bigger than the band gap. Moreover, we find that in MAPbI_{3} the flexophotovoltaic effect is additional to a native bulk photovoltaic response that is switchable and ferroelectric-like. The results suggest that strain gradient engineering can be a powerful tool to modify the photovoltaic output even in already well-established photovoltaic materials.

2.
Nanomaterials (Basel) ; 14(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334547

RESUMEN

Defect engineering constitutes a widely-employed method of adjusting the electronic structure and properties of oxide materials. However, controlling defects at room temperature remains a significant challenge due to the considerable thermal stability of oxide materials. In this work, a facile room-temperature lithium reduction strategy is utilized to implant oxide defects into perovskite BaTiO3 (BTO) nanoparticles to enhance piezocatalytic properties. As a potential application, the piezocatalytic performance of defective BTO is examined. The reaction rate constant increases up to 0.1721 min-1, representing an approximate fourfold enhancement over pristine BTO. The effect of oxygen vacancies on piezocatalytic performance is discussed in detail. This work gives us a deeper understanding of vibration catalysis and provides a promising strategy for designing efficient multi-field catalytic systems in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA