Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(8): 086902, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38457719

RESUMEN

We have measured the flexophotovoltaic effect of single crystals of halide perovskites MAPbBr_{3} and MAPbI_{3}, as well as the benchmark oxide perovskite SrTiO_{3}. For halide perovskites, the flexophotovoltaic effect is found to be orders of magnitude larger than for SrTiO_{3}, and indeed large enough to induce photovoltages bigger than the band gap. Moreover, we find that in MAPbI_{3} the flexophotovoltaic effect is additional to a native bulk photovoltaic response that is switchable and ferroelectric-like. The results suggest that strain gradient engineering can be a powerful tool to modify the photovoltaic output even in already well-established photovoltaic materials.

2.
Nanomaterials (Basel) ; 14(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334547

RESUMEN

Defect engineering constitutes a widely-employed method of adjusting the electronic structure and properties of oxide materials. However, controlling defects at room temperature remains a significant challenge due to the considerable thermal stability of oxide materials. In this work, a facile room-temperature lithium reduction strategy is utilized to implant oxide defects into perovskite BaTiO3 (BTO) nanoparticles to enhance piezocatalytic properties. As a potential application, the piezocatalytic performance of defective BTO is examined. The reaction rate constant increases up to 0.1721 min-1, representing an approximate fourfold enhancement over pristine BTO. The effect of oxygen vacancies on piezocatalytic performance is discussed in detail. This work gives us a deeper understanding of vibration catalysis and provides a promising strategy for designing efficient multi-field catalytic systems in the future.

3.
ACS Appl Mater Interfaces ; 15(29): 35170-35177, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37436879

RESUMEN

The advantages of van der Waals epitaxy have attracted great interest because they can meet the requirements that conventional epitaxy struggles to satisfy. The weak adatom-substrate interaction without directional covalent bonding drastically relaxes the lattice matching limitation. However, the weak adatom-substrate interaction also leads to ineffectiveness in directing the crystal growth structure, limiting it to one orientation in epitaxial growth. In this work, we propose a domain matching strategy to guide the perovskite-type crystal epitaxial growth on 2D substrates, and we have demonstrated selective deposition of highly (001)-, (110)-, and (111)-oriented epitaxial Fe4N thin films on mica substrates using applicable transition structure design. Our work makes it possible to achieve and control different orientations of van der Waals epitaxy on the same substrate.

4.
Small ; 17(39): e2103301, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34473395

RESUMEN

The nucleation and growth of bubbles within a solid matrix is a ubiquitous phenomenon that affects many natural and synthetic processes. However, such a bubbling process is almost "invisible" to common characterization methods because it has an intrinsically multiphased nature and occurs on very short time/length scales. Using in situ transmission electron microscopy to explore the decomposition of a solid precursor that emits gaseous byproducts, the direct observation of a complete nanoscale bubbling process confined in ultrathin 2D flakes is presented here. This result suggests a three-step pathway for bubble formation in the confined environment: void formation via spinodal decomposition, bubble nucleation from the spherization of voids, and bubble growth by coalescence. Furthermore, the systematic kinetics analysis based on COMSOL simulations shows that bubble growth is actually achieved by developing metastable or unstable necks between neighboring bubbles before coalescing into one. This thorough understanding of the bubbling mechanism in a confined geometry has implications for refining modern nucleation theories and controlling bubble-related processes in the fabrication of advanced materials (i.e., topological porous materials).

5.
Nano Lett ; 21(1): 144-150, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33306405

RESUMEN

Materials with reduced dimensions have been shown to host a wide variety of exotic properties and novel quantum states that often defy textbook wisdom. Polarization switching and metallic screening are well-known examples of mutually exclusive properties that cannot coexist in bulk solids. Here we report the fabrication of (SrRuO3)1/(BaTiO3)10 superlattices that exhibits reversible polarization switching in an atomically thin metallic layer. A multipronged investigation combining structural analyses, electrical measurements, and first-principles electronic structure calculations unravels the coexistence of two-dimensional (2D) metallicity in the SrRuO3 layer accompanied by the breaking of inversion symmetry, supporting electric polarization along the out-of-plane direction. Such a 2D ferroelectric-like metal paves a novel way to engineer a quantum multistate with unusual coexisting properties, such as ferroelectrics and metals, manipulated by external fields.

6.
Nano Lett ; 20(11): 8112-8119, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33044079

RESUMEN

Heterogeneous ice nucleation on atmospheric aerosols strongly affects the earth's climate, and at the microscopic level, surface-irregularity-induced ice crystallization behaviors are common but crucial. Because of the lack of visual evidence and effective experimental methods, the mechanism of atomic-structure-dependent ice formation on aerosol surfaces is poorly understood. Here we chose highly oriented pyrolytic graphite (HOPG) to represent soot (a primary aerosol), and environmental scanning electron microscopy (ESEM) was performed for in situ observations of ice formation. We found that hexagonal ice crystals show an aligned growth pattern via a two-stage pathway with one a axis coinciding with the direction of atomic step edges on the HOPG surface. Additionally, the ice crystals grow at a noticeably higher speed along this direction. This study reveals the role of atomic surface defects in heterogeneous ice nucleation and may pave the way to control icing-related processes in practical applications.

7.
Nat Mater ; 19(6): 605-609, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32313265

RESUMEN

Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials1-3, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.

8.
Glob Chall ; 4(3): 1900073, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32140253

RESUMEN

To solve the problems of fast-charging of lithium-ion batteries in essence, development of new electrode materials with higher lithium-ion diffusion coefficients is the key. In this work, a novel flower-like Ni@SnNi structure is synthesized via a two-step process design, which consists of the fabrication of Ni cores by spray pyrolysis followed by the formation of SnNi shells via a simple oxidation-reduction reaction. The obtained Ni@SnNi composite exhibits an initial capacity of ≈693 mA h g-1 and a reversible capacity of ≈570 mA h g-1 after 300 charge/discharge cycles at 0.5 C, and maintains 450 mA h g-1 even at a high rate of 3 C. Further, it is proved that a Ni@SnNi composite possesses high lithium-ion diffusion coefficient (≈10-8), which is much higher than those (≈10-10) reported previously, which can be mainly attributed to the unique flower-like Ni@SnNi structure. In addition, the full cell performance (Ni@SnNi-9h/graphite vs LiCoO2) with a capacity ratio of 1.13 (anode/cathode) is also tested. It is found that even at 2 C rate charging/discharging, the capacity retention at 100 cycles is still close to 89%. It means that Ni@SnNi-9h is a promising anode additive for lithium-ion batteries with high energy density and power density.

9.
Chem Commun (Camb) ; 55(19): 2777-2780, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30758031

RESUMEN

Tetramethylammonium hydroxide (TMAH) is employed to modify the surface and electrical properties of fluorine-doped tin oxide (FTO) electrodes in perovskite solar cells. Synchronously, owing to the flow of unbound TMA+ ions into the perovskite, the trap density of the perovskite overlayer is largely reduced. Conductivity of the grain boundaries in the perovskite layer is also greatly increased. A high efficiency of 20.1% along with a reduced J-V hysteresis in our champion perovskite solar cells without electron transport layers is achieved.

10.
ACS Appl Mater Interfaces ; 11(4): 4139-4144, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30618238

RESUMEN

HfO2-based unconventional ferroelectric materials were recently discovered and have attracted a great deal of attention in both academia and industry. The growth of epitaxial Si-doped HfO2 films has opened up a route to understand the mechanism of ferroelectricity. Here, we used pulsed laser deposition to grow epitaxial Si-doped HfO2 films in different orientations of N-type SrTiO3 substrates. Polar nanodomains can be written and read using piezoforce microscopy, and these domains are reversibly switched with a phase change of 180°. Films with different thicknesses displayed a coercive field Ec and a remnant polarization Pr of approximately 4-5 MV/cm and 8-32 µC/cm2, respectively. X-ray diffraction and high-resolution transmission electron microscopy (HRTEM) results identified that the as-grown Si-doped HfO2 films have strained fluorite structures. The ABAB stacking mode of the Hf atomic grid observed by HRTEM clearly demonstrates that the ferroelectricity originates from the noncentrosymmetric Pca21 polar structure. Combined with soft X-ray absorption spectra, the results showed that the Pca21 ferroelectric crystal structure manifested as an O sublattice distortion by the effect of the interface strain and Si dopant interactions, resulting in a nanoscaled ferroelectric ordered state because of further crystal splitting.

11.
Adv Healthc Mater ; 7(19): e1800536, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30117317

RESUMEN

Organic bioelectronics have shown promising applications for various sensing purposes due to their significant advantages in term of high flexibility, portability, easy fabrication, and biocompatibility. Here, a new type of organic device, organic photo-electrochemical transistor (OPECT), is reported, which is the combination of an organic electrochemical transistor and a photo-electrochemical gate electrode modified with CdS quantum dots (QDs). Thanks to the inherent amplification function of the transistor, the OPECT-based biosensor exhibits much higher sensitivity than that of a traditional biosensor. The sensing mechanism of the OPECT is attributed to the charge transfer between the photosensitive semiconductor CdS QDs and the gate electrode. In an OPECT-based DNA sensor, target DNA is labeled with Au nanoparticles (NPs) and captured on the gate electrode, which can influence the charge transfer on the gate caused by the exciton-plasmon interactions between CdS QDs and Au NPs. Consequently, a highly sensitive and selective DNA sensor with a detection limit of around 1 × 10-15 m is realized. It is expected that OPECTs can be developed as a high-performance platform for numerous biological detections in the future.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/análisis , Técnicas Electroquímicas/métodos , Oro/química , Nanopartículas del Metal/química , Animales , Humanos , Puntos Cuánticos
12.
ACS Appl Mater Interfaces ; 10(21): 18029-18035, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29745233

RESUMEN

Epitaxy and misfit strain imposed by underlying substrates have been intensively used to tailor the microstructure and electronic properties of oxide films, but this approach is largely restricted by commercially limited substrates. In contrast to the conventional epitaxial misfit strains with a positive Poisson's constant, we show here a tunable Poisson's ratio with anomalous values from negative, zero, to positive. This permits effective control over the out-of-plane lattice parameters that strongly correlate the magnetic and transport properties in perovskite mixed-valence La1- xSr xMnO3 thin films. Our results provide an unconventional approach to better modulation and understanding of elastic-mediated microstructures and physical properties of oxide films by engineering the Poisson's ratios.

13.
ACS Appl Mater Interfaces ; 10(18): 16160-16168, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29687707

RESUMEN

Transparent flexible electrodes are in ever-growing demand for modern stretchable optoelectronic devices, such as display technologies, solar cells, and smart windows. Such sandwich-film-electrodes deposited on polymer substrates are unattainable because of the low quality of the films, inducing a relatively large optical loss and resistivity as well as a difficulty in elucidating the interference behavior of light. In this article, we report a high-quality AZO/Au/AZO sandwich film with excellent optoelectronic performance, e.g., an average transmittance of about 81.7% (including the substrate contribution) over the visible range, a sheet resistance of 5 Ω/sq, and a figure-of-merit (FoM) factor of ∼55.1. These values are well ahead of those previously reported for sandwich-film-electrodes. Additionally, the interference behaviors of light modulated by the coat and metal layers have been explored with the employment of transmittance spectra and numerical simulations. In particular, a heater device based on an AZO/Au/AZO sandwich film exhibits high performance such as short response time (∼5 s) and uniform temperature field. This work provides a deep insight into the improvement of the film quality of the sandwich electrodes and the design of high-performance transparent flexible devices by the application of a flexible substrate with an atomically smooth surface.

14.
Nat Commun ; 8(1): 1474, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29133800

RESUMEN

Multi-layer structure of functional materials often involves the integration of different crystalline phases. The film growth orientation thus frequently exhibits a transformation, owing to multiple possibilities caused by incompatible in-plane structural symmetry. Nevertheless, the detailed mechanism of the transformation has not yet been fully explored. Here we thoroughly probe the heteroepitaxially grown hexagonal zinc oxide (ZnO) films on cubic (001)-magnesium oxide (MgO) substrates using advanced scanning transition electron microscopy, X-ray diffraction and first principles calculations, revealing two distinct interface models of (001) ZnO/(001) MgO and (100) ZnO/(001) MgO. We have found that the structure alternatives are controlled thermodynamically by the nucleation, while kinetically by the enhanced Zn adsorption and O diffusion upon the phase transformation. This work not only provides a guideline for the interface fabrication with distinct crystalline phases but also shows how polar and non-polar hexagonal ZnO films might be manipulated on the same cubic substrate.

15.
Sci Rep ; 7(1): 10144, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860639

RESUMEN

(In + Nb) co-doped TiO2 (TINO) rutile is an emerging material with a colossal dielectric permittivity (CP) and a low dielectric loss over wide temperature and frequency ranges. The electrical inhomogeneous nature of TINO ceramics is demonstrated by direct local current probing with high-resolution conductive atomic force microscopy (cAFM). The CP response in TINO is found to originate from the electron-pinned defect dipole induced conductive cluster effect and the electrode effect. Two types of dielectric relaxations are simultaneously observed due to these two effects. With the given synthesis condition, we found TINO shows a highly leaky feature that impairs its application as a dielectric material. However, the fast-temperature-rising phenomenon found in this work may open a new door for TINO to be applied as a potential electrothermal material with high efficiency, oxidation-proof, high temperature stability, and energy saving.

16.
Sensors (Basel) ; 17(9)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28858233

RESUMEN

The freshwater unicellular microalga Haematococcus pluvialis (H. pluvialis) has gained increasing attention because of its high-value metabolite astaxanthin, a super anti-oxidant. For the maximum astaxanthin production, a key problem is how to determine the senescent green vegetative phase of H. pluvialis cells to apply the astaxanthin production inducers. The conventional methods are time-consuming and laborious. In this study, a novel platform based on organic electrochemical transistor (OECT) was produced. A significant channel current change of OECTs caused by settled H. pluvialis cells on the poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) film was recorded commencing from 75 min and a stationary stage was achieved at 120 min after the combined treatment of blue light irradiation and sodium bicarbonate solution additives, which indicate the onset and maturation of the senescent green vegetative phase, respectively. Therefore, the appropriate time point (120 min after sample loading) to apply astaxanthin production inducers was determined by as-fabricated OECTs. This work may assist to develop a real-time biosensor to indicate the appropriate time to apply inducers for a maximum astaxanthin production of H. pluvialis cells.


Asunto(s)
Chlorophyta , Recuento de Células , Color , Técnicas Electroquímicas , Luz
17.
Sci Rep ; 7(1): 6693, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28751640

RESUMEN

BaTi1-xSnxO3 (BTSn, 0 ≤ x ≤ 0.30) ceramics were prepared by both the conventional sintering (CS) and sparking plasma sintering (SPS). Composition, temperature and grain size dependences of the nonlinear dielectric behaviors were systematically studied. BTSn was found to have especially large tunability (≥90%), which is larger than most other Pb-free systems, and is comparable to Pb-based relaxors. The high dielectric tunability in BTSn is attributed to its specific domain structures. Besides, temperature dependent tunability of BTSn presents a dispersed behavior and the dispersion is enhanced with the increase of Sn4+ concentrations, which is explained by the compositional fluctuation model.

18.
Sensors (Basel) ; 17(1)2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28117697

RESUMEN

Breath acetone serves as a biomarker for diabetes. This article reports 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), a type of room temperature ionic liquid (RTIL), as a selective sensing material for acetone. The RTIL sensing layer was coated on a quartz crystal microbalance (QCM) for detection. The sensing mechanism is based on a decrease in viscosity and density of the [bmim][BF4] film due to the solubilization of acetone leading to a positive frequency shift in the QCM. Acetone was detected with a linear range from 7.05 to 750 ppmv. Sensitivity and limit of detection were found to be 3.49 Hz/ppmv and 5.0 ppmv, respectively. The [bmim][BF4]-modified QCM sensor demonstrated anti-interference ability to commonly found volatile organic compounds in breath, e.g., isoprene, 1,2-pentadiene, d-limonene, and dl-limonene. This technology is useful for applications in non-invasive early diabetic diagnosis.


Asunto(s)
Tecnicas de Microbalanza del Cristal de Cuarzo , Acetona , Ciclohexenos , Imidazoles , Limoneno , Cuarzo , Terpenos
19.
Adv Mater ; 29(6)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27918119

RESUMEN

A brand new polysulfide entrapping strategy based on the ferroelectric effect has been demonstrated for the first time. By simply adding the nano-ferroelectrics (BaTiO3 nanoparticles) into the cathode, the heteropolar polysulfides can be anchored within the cathode due to the internal electric field originated from the spontaneous polarization BaTiO3 nanoparticles, and thus significantly improving the cycle stability of Li-S batteries.

20.
Opt Lett ; 41(21): 4895-4898, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27805644

RESUMEN

In this Letter, we report on the structural and optical characteristics of ZnO films with a wurtzite structure grown on MgO (001) substrates with cubic structures. The ZnO films were prepared through the molecular beam epitaxy method, and growth orientation transformation from [0001] to [10-10] direction was observed with the change of growth temperature and thickness. The x-ray diffraction pole figures and in situ RHEED patterns demonstrated that the rotational relationship among grains within the ZnO films appeared in a typical two-fold rotation of about 30° for the [0001] growth orientation and four-fold rotation of about 30° or 60° for the [10-10] growth orientation, respectively. Last, we investigated their optical properties through measuring the transmission and photoluminescence spectra of the ZnO films, which showed the bulk-like bandgap feature of the ZnO films in spite of the existing growth orientation transformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...