Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 11(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36143055

RESUMEN

Electrocardiogram (ECG) is an important tool for the detection of acute ST-segment elevation myocardial infarction (STEMI). However, machine learning (ML) for the diagnosis of STEMI complicated with arrhythmia and infarct-related arteries is still underdeveloped based on real-world data. Therefore, we aimed to develop an ML model using the Least Absolute Shrinkage and Selection Operator (LASSO) to automatically diagnose acute STEMI based on ECG features. A total of 318 patients with STEMI and 502 control subjects were enrolled from Jan 2017 to Jun 2019. Coronary angiography was performed. A total of 180 automatic ECG features of 12-lead ECG were input into the model. The LASSO regression model was trained and validated by the internal training dataset and tested by the internal and external testing datasets. A comparative test was performed between the LASSO regression model and different levels of doctors. To identify the STEMI and non-STEMI, the LASSO model retained 14 variables with AUCs of 0.94 and 0.93 in the internal and external testing datasets, respectively. The performance of LASSO regression was similar to that of experienced cardiologists (AUC: 0.92) but superior (p < 0.05) to internal medicine residents, medical interns, and emergency physicians. Furthermore, in terms of identifying left anterior descending (LAD) or non-LAD, LASSO regression achieved AUCs of 0.92 and 0.98 in the internal and external testing datasets, respectively. This LASSO regression model can achieve high accuracy in diagnosing STEMI and LAD vessel disease, thus providing an assisting diagnostic tool based on ECG, which may improve the early diagnosis of STEMI.

2.
Pharm Biol ; 59(1): 1369-1377, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34629012

RESUMEN

CONTEXT: Ginsenoside Rb1 (Rb1) exerts many beneficial effects and protects against cardiovascular disease. OBJECTIVE: To investigate whether Rb1 could attenuate age-related vascular impairment and identify the mechanism. MATERIALS AND METHODS: Female C57BL/6J mice aged 2 and 18 months, randomly assigned to Young, Young + 20 mg/kg Rb1, Old + vehicle, Old + 10 mg/kg Rb1 and Old + 20 mg/kg Rb1 groups, were daily intraperitoneal injected with vehicle or Rb1 for 3 months. The thoracic aorta segments were used to inspect the endothelium-dependent vasorelaxation. Left thoracic aorta tissues were collected for histological or molecular expression analyses, including ageing-related proteins, markers relevant to calcification and fibrosis, and expression of Gas6/Axl. RESULTS: We found that in Old + vehicle group, the expression of senescence proteins and cellular adhesion molecules were significantly increased, with worse endothelium-dependent thoracic aorta relaxation (58.35% ± 2.50%) than in Young group (88.84% ± 1.20%). However, Rb1 treatment significantly decreased the expression levels of these proteins and preserved endothelium-dependent relaxation in aged mice. Moreover, Rb1 treatment also reduced calcium deposition, collagen deposition, and the protein expression levels of collagen I and collagen III in aged mice. Furthermore, we found that the downregulation of Gas6 protein expression by 41.72% and mRNA expression by 52.73% in aged mice compared with young mice was abrogated by Rb1 treatment. But there was no significant difference on Axl expression among the groups. CONCLUSIONS: Our study confirms that Rb1 could ameliorate vascular injury, suggesting that Rb1 might be a potential anti-ageing related vascular impairment agent.


Asunto(s)
Envejecimiento/efectos de los fármacos , Ginsenósidos/farmacología , Péptidos y Proteínas de Señalización Intercelular/genética , Enfermedades Vasculares/prevención & control , Factores de Edad , Envejecimiento/patología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Relación Dosis-Respuesta a Droga , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ginsenósidos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Vasodilatación/efectos de los fármacos
3.
Chin J Integr Med ; 27(5): 336-344, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33420900

RESUMEN

OBJECTIVE: To investigate whether ginsenoside Rb1 (Rb1) can protect human umbilical vein endothelial cells (HUVECs) against high glucose-induced apoptosis and examine the underlying mechanism. METHODS: HUVECs were divided into 5 groups: control group (5.5 mmol/L glucose), high glucose (HG, 40 mmol/L) treatment group, Rb1 (50 µ mol/L) treatment group, Rb1 plus HG treatment group, and Rb1 and 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP, 16 µ mol/L) plus HG treatment group. Cell viability was evaluated by cell counting kit-8 assay. Mitochondrial and intracellular reactive oxygen species were detected by MitoSox Red mitochondrial superoxide indicator and dichloro-dihydro-fluorescein diacetate assay, respectively. Annexin V/propidium iodide staining and fluorescent dye staining were used to measure the apoptosis and the mitochondrial membrane potential of HUVECs, respectively. The protein expressions of apoptosis-related proteins [Bcl-2, Bax, cleaved caspase-3 and cytochrome c (Cyt-c)], mitochondrial biogenesis-related proteins [proliferator-activated receptor gamma coactivator 1-alpha, nuclear respiratory factor-1 and mitochondrial transcription factor A)], acetylation levels of forkhead box O3a and SOD2, and sirtuin-3 (SIRT3) signalling pathway were measured by immunoblotting and immunoprecipitation. RESULTS: Rb1 ameliorated survival in cells in which apoptosis was induced by high glucose (P<0.05 or P<0.01). Upon the addition of Rb1, mitochondrial and intracellular reactive oxygen species generation and malondialdehyde levels were decreased (P<0.01), while the activities of antioxidant enzymes were increased (P<0.05 or P<0.01). Rb1 preserved the mitochondrial membrane potential and reduced the release of Cyt-c from the mitochondria into the cytosol (P<0.01). In addition, Rb1 upregulated mitochondrial biogenesis-associated proteins (P<0.01). Notably, the cytoprotective effects of Rb1 were correlated with SIRT3 signalling pathway activation (P<0.01). The effect of Rb1 against high glucose-induced mitochondria-related apoptosis was restrained by 3-TYP (P<0.05 or P<0.01). CONCLUSION: Rb1 could protect HUVECs from high glucose-induced apoptosis by promoting mitochondrial function and suppressing oxidative stress through the SIRT3 signalling pathway.


Asunto(s)
Mitocondrias , Apoptosis , Células Endoteliales , Ginsenósidos , Glucosa/metabolismo , Glucosa/toxicidad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión a Retinoblastoma/metabolismo , Sirtuina 3 , Ubiquitina-Proteína Ligasas/metabolismo , Cordón Umbilical
4.
Am J Chin Med ; 48(6): 1369-1383, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32933311

RESUMEN

Age-related myocardial dysfunction is a very large healthcare burden. Here, we aimed to investigate whether ginsenoside Rb1 (Rb1) improves age-related myocardial dysfunction and to identify the relevant molecular mechanism. Young mice and aged mice were injected with Rb1 or vehicle for 3 months. Then, their cardiac function was inspected by transthoracic echocardiography. Serum and myocardium tissue were collected from all mice for histological or molecular expression analyses, including aging-related proteins, markers relevant to fibrosis and inflammation, and markers indicating the activation of the nuclear factor-kappa B (NF-[Formula: see text]B) pathway. Compared with the control condition, Rb1 treatment significantly increased the ejection fraction percentage and significantly decreased the internal diameter and volume of the left ventricle at the end-systolic and end-diastolic phases in aged mice. Rb1 treatment reduced collagen deposition and collagen I, collagen III, and transforming growth factor-[Formula: see text]1 protein expression levels in aged hearts. Rb1 also decreased the aging-induced myocardial inflammatory response, as measured by serum or myocardial interleukin-6 and tumor necrosis factor-[Formula: see text] levels. Furthermore, Rb1 treatment in aged mice increased cytoplasmic NF-[Formula: see text]B but decreased nuclear NF-[Formula: see text]B, which indicated the suppression of the NF-[Formula: see text]B signaling pathway by regulating the translocation of NF-[Formula: see text]B. Rb1 could alleviate aging-related myocardial dysfunction by suppressing fibrosis and inflammation, which is potentially associated with regulation of the NF-[Formula: see text]B signaling pathway.


Asunto(s)
Envejecimiento , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , FN-kappa B/genética , FN-kappa B/metabolismo , Fitoterapia , Animales , Antiinflamatorios , Colágeno/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Volumen Sistólico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA