Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826407

RESUMEN

The expansion of biobanks has significantly propelled genomic discoveries yet the sheer scale of data within these repositories poses formidable computational hurdles, particularly in handling extensive matrix operations required by prevailing statistical frameworks. In this work, we introduce computational optimizations to the SAIGE (Scalable and Accurate Implementation of Generalized Mixed Model) algorithm, notably employing a GPU-based distributed computing approach to tackle these challenges. We applied these optimizations to conduct a large-scale genome-wide association study (GWAS) across 2,068 phenotypes derived from electronic health records of 635,969 diverse participants from the Veterans Affairs (VA) Million Veteran Program (MVP). Our strategies enabled scaling up the analysis to over 6,000 nodes on the Department of Energy (DOE) Oak Ridge Leadership Computing Facility (OLCF) Summit High-Performance Computer (HPC), resulting in a 20-fold acceleration compared to the baseline model. We also provide a Docker container with our optimizations that was successfully used on multiple cloud infrastructures on UK Biobank and All of Us datasets where we showed significant time and cost benefits over the baseline SAIGE model.

2.
Pac Symp Biocomput ; 29: 594-610, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160309

RESUMEN

Access to safe and effective antiretroviral therapy (ART) is a cornerstone in the global response to the HIV pandemic. Among people living with HIV, there is considerable interindividual variability in absolute CD4 T-cell recovery following initiation of virally suppressive ART. The contribution of host genetics to this variability is not well understood. We explored the contribution of a polygenic score which was derived from large, publicly available summary statistics for absolute lymphocyte count from individuals in the general population (PGSlymph) due to a lack of publicly available summary statistics for CD4 T-cell count. We explored associations with baseline CD4 T-cell count prior to ART initiation (n=4959) and change from baseline to week 48 on ART (n=3274) among treatment-naïve participants in prospective, randomized ART studies of the AIDS Clinical Trials Group. We separately examined an African-ancestry-derived and a European-ancestry-derived PGSlymph, and evaluated their performance across all participants, and also in the African and European ancestral groups separately. Multivariate models that included PGSlymph, baseline plasma HIV-1 RNA, age, sex, and 15 principal components (PCs) of genetic similarity explained ∼26-27% of variability in baseline CD4 T-cell count, but PGSlymph accounted for <1% of this variability. Models that also included baseline CD4 T-cell count explained ∼7-9% of variability in CD4 T-cell count increase on ART, but PGSlymph accounted for <1% of this variability. In univariate analyses, PGSlymph was not significantly associated with baseline or change in CD4 T-cell count. Among individuals of African ancestry, the African PGSlymph term in the multivariate model was significantly associated with change in CD4 T-cell count while not significant in the univariate model. When applied to lymphocyte count in a general medical biobank population (Penn Medicine BioBank), PGSlymph explained ∼6-10% of variability in multivariate models (including age, sex, and PCs) but only ∼1% in univariate models. In summary, a lymphocyte count PGS derived from the general population was not consistently associated with CD4 T-cell recovery on ART. Nonetheless, adjusting for clinical covariates is quite important when estimating such polygenic effects.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Humanos , Linfocitos T CD4-Positivos , Estudios Prospectivos , Fármacos Anti-VIH/uso terapéutico , Biología Computacional , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Recuento de Linfocito CD4 , Carga Viral
3.
Am J Hum Genet ; 110(10): 1628-1647, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37757824

RESUMEN

Pharmacogenomics (PGx) is an integral part of precision medicine and contributes to the maximization of drug efficacy and reduction of adverse drug event risk. Accurate information on PGx allele frequencies improves the implementation of PGx. Nonetheless, curating such information from published allele data is time and resource intensive. The limited number of allelic variants in most studies leads to an underestimation of certain alleles. We applied the Pharmacogenomics Clinical Annotation Tool (PharmCAT) on an integrated 200K UK Biobank genetic dataset (N = 200,044). Based on PharmCAT results, we estimated PGx frequencies (alleles, diplotypes, phenotypes, and activity scores) for 17 pharmacogenes in five biogeographic groups: European, Central/South Asian, East Asian, Afro-Caribbean, and Sub-Saharan African. PGx frequencies were distinct for each biogeographic group. Even biogeographic groups with similar proportions of phenotypes were driven by different sets of dominant PGx alleles. PharmCAT also identified "no-function" alleles that were rare or seldom tested in certain groups by previous studies, e.g., SLCO1B1∗31 in the Afro-Caribbean (3.0%) and Sub-Saharan African (3.9%) groups. Estimated PGx frequencies are disseminated via the PharmGKB (The Pharmacogenomics Knowledgebase: www.pharmgkb.org). We demonstrate that genetic biobanks such as the UK Biobank are a robust resource for estimating PGx frequencies. Improving our understanding of PGx allele and phenotype frequencies provides guidance for future PGx studies and clinical genetic test panel design, and better serves individuals from wider biogeographic backgrounds.


Asunto(s)
Bancos de Muestras Biológicas , Farmacogenética , Humanos , Farmacogenética/métodos , Alelos , Medicina de Precisión/métodos , Frecuencia de los Genes/genética , Transportador 1 de Anión Orgánico Específico del Hígado
4.
Pac Symp Biocomput ; 28: 233-244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36540980

RESUMEN

Widespread availability of antiretroviral therapies (ART) for HIV-1 have generated considerable interest in understanding the pharmacogenomics of ART. In some individuals, ART has been associated with excessive weight gain, which disproportionately affects women of African ancestry. The underlying biology of ART-associated weight gain is poorly understood, but some genetic markers which modify weight gain risk have been suggested, with more genetic factors likely remaining undiscovered. To overcome limitations in available sample sizes for genome-wide association studies (GWAS) in people with HIV, we explored whether a multi-ancestry polygenic risk score (PRS) derived from large, publicly available non-HIV GWAS for body mass index (BMI) can achieve high cross-ancestry performance for predicting baseline BMI in diverse, prospective ART clinical trials datasets, and whether that PRSBMI is also associated with change in BMI over 48 weeks on ART. We show that PRSBMI explained ∼5-7% of variability in baseline (pre-ART) BMI, with high performance in both European and African genetic ancestry groups, but that PRSBMI was not associated with change in BMI on ART. This study argues against a shared genetic predisposition for baseline (pre-ART) BMI and ART-associated weight gain.


Asunto(s)
Estudio de Asociación del Genoma Completo , Infecciones por VIH , Humanos , Femenino , Índice de Masa Corporal , Estudios Prospectivos , Biología Computacional , Aumento de Peso/genética , Factores de Riesgo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Predisposición Genética a la Enfermedad
5.
Clin Pharmacol Ther ; 113(5): 1036-1047, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36350094

RESUMEN

Pharmacogenomics (PGx) investigates the genetic influence on drug response and is an integral part of precision medicine. While PGx testing is becoming more common in clinical practice and may be reimbursed by Medicare/Medicaid and commercial insurance, interpreting PGx testing results for clinical decision support is still a challenge. The Pharmacogenomics Clinical Annotation Tool (PharmCAT) has been designed to tackle the need for transparent, automatic interpretations of patient genetic data. PharmCAT incorporates a patient's genotypes, annotates PGx information (allele, genotype, and phenotype), and generates a report with PGx guideline recommendations from the Clinical Pharmacogenetics Implementation Consortium (CPIC) and/or the Dutch Pharmacogenetics Working Group (DPWG). PharmCAT has introduced new features in the last 2 years, including a variant call format (VCF) Preprocessor, the inclusion of DPWG guidelines, and functionalities for PGx research. For example, researchers can use the VCF Preprocessor to prepare biobank-scale data for PharmCAT. In addition, PharmCAT enables the assessment of novel partial and combination alleles that are composed of known PGx variants and can call CYP2D6 genotypes based on single and deletions in the input VCF file. This tutorial provides materials and detailed step-by-step instructions for how to use PharmCAT in a versatile way that can be tailored to users' individual needs.


Asunto(s)
Medicare , Farmacogenética , Anciano , Estados Unidos , Humanos , Farmacogenética/métodos , Medicina de Precisión/métodos , Genotipo , Fenotipo
6.
J Transl Med ; 20(1): 550, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443877

RESUMEN

BACKGROUND: Pharmacogenomics (PGx) aims to utilize a patient's genetic data to enable safer and more effective prescribing of medications. The Clinical Pharmacogenetics Implementation Consortium (CPIC) provides guidelines with strong evidence for 24 genes that affect 72 medications. Despite strong evidence linking PGx alleles to drug response, there is a large gap in the implementation and return of actionable pharmacogenetic findings to patients in standard clinical practice. In this study, we evaluated opportunities for genetically guided medication prescribing in a diverse health system and determined the frequencies of actionable PGx alleles in an ancestrally diverse biobank population. METHODS: A retrospective analysis of the Penn Medicine electronic health records (EHRs), which includes ~ 3.3 million patients between 2012 and 2020, provides a snapshot of the trends in prescriptions for drugs with genotype-based prescribing guidelines ('CPIC level A or B') in the Penn Medicine health system. The Penn Medicine BioBank (PMBB) consists of a diverse group of 43,359 participants whose EHRs are linked to genome-wide SNP array and whole exome sequencing (WES) data. We used the Pharmacogenomics Clinical Annotation Tool (PharmCAT), to annotate PGx alleles from PMBB variant call format (VCF) files and identify samples with actionable PGx alleles. RESULTS: We identified ~ 316.000 unique patients that were prescribed at least 2 drugs with CPIC Level A or B guidelines. Genetic analysis in PMBB identified that 98.9% of participants carry one or more PGx actionable alleles where treatment modification would be recommended. After linking the genetic data with prescription data from the EHR, 14.2% of participants (n = 6157) were prescribed medications that could be impacted by their genotype (as indicated by their PharmCAT report). For example, 856 participants received clopidogrel who carried CYP2C19 reduced function alleles, placing them at increased risk for major adverse cardiovascular events. When we stratified by genetic ancestry, we found disparities in PGx allele frequencies and clinical burden. Clopidogrel users of Asian ancestry in PMBB had significantly higher rates of CYP2C19 actionable alleles than European ancestry users of clopidrogrel (p < 0.0001, OR = 3.68). CONCLUSIONS: Clinically actionable PGx alleles are highly prevalent in our health system and many patients were prescribed medications that could be affected by PGx alleles. These results illustrate the potential utility of preemptive genotyping for tailoring of medications and implementation of PGx into routine clinical care.


Asunto(s)
Bancos de Muestras Biológicas , Farmacogenética , Humanos , Alelos , Citocromo P-450 CYP2C19 , Clopidogrel , Estudios Retrospectivos
7.
Mol Biol Evol ; 34(6): 1543-1546, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333216

RESUMEN

The ability to manipulate sequence, alignment, and phylogenetic tree files has become an increasingly important skill in the life sciences, whether to generate summary information or to prepare data for further downstream analysis. The command line can be an extremely powerful environment for interacting with these resources, but only if the user has the appropriate general-purpose tools on hand. BuddySuite is a collection of four independent yet interrelated command-line toolkits that facilitate each step in the workflow of sequence discovery, curation, alignment, and phylogenetic reconstruction. Most common sequence, alignment, and tree file formats are automatically detected and parsed, and over 100 tools have been implemented for manipulating these data. The project has been engineered to easily accommodate the addition of new tools, is written in the popular programming language Python, and is hosted on the Python Package Index and GitHub to maximize accessibility. Documentation for each BuddySuite tool, including usage examples, is available at http://tiny.cc/buddysuite_wiki. All software is open source and freely available through http://research.nhgri.nih.gov/software/BuddySuite.


Asunto(s)
Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Biología Computacional , Filogenia , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...