Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 19(32): e2300655, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37069782

RESUMEN

Direct laser writing (DLW) of mesoporous porous silicon (PS) films is shown to selectively create spatially separated nitridized and carbonized features on a single film. Nitridized or carbonized features are formed during DLW at 405 nm in an ambient of nitrogen and propane gas, respectively. The range of laser fluence required to create varying feature sizes while avoiding damage to the PS film is identified. At high enough fluence, nitridation using DLW has been shown as an effective method for laterally isolating regions on the PS films. The efficacy in preventing oxidation once passivated is investigated via energy dispersive X-ray spectroscopy. Changes in composition and optical properties of the DL written films are investigated using spectroscopic analysis. Results show carbonized DLW regions have a much higher absorption than as-fabricated PS, attributed to pyrolytic carbon or transpolyacetylene deposits in the pores. Nitridized regions exhibit optical loss similar to previously published thermally nitridized PS films. This work presents methods to engineer PS films for a variety of potential device applications, including the application of carbonized PS to selectively engineer thermal conductivity and electrical resistivity and of nitridized PS to micromachining and selective modification of refractive index for optical applications.

2.
Sensors (Basel) ; 21(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34883783

RESUMEN

While wireless IOT modules can be made extremely compact, antennas typically protrude from the module, providing the potential to catch near moving/rotating equipment or transfer loads to the PCB through end forces, which can lead to failures. This work explores the use of split-ring resonator (SRR) designs to achieve a planar antenna with a maximum dimension less than a monopole working at the same frequency. The very narrow bandwidth of the SRR required detailed physical models to create printed circuit board (PCB)-based antenna designs that could be used at LoRa frequencies of 433 MHz and 915 MHz. Uncertainty analysis allowed for the impact of geometrical and physical tolerances on the resonant frequency to be evaluated. Nearfield and farfield measurements were performed allowing for the resonant frequency, directionality, and range of the antenna to be evaluated. An unbalanced SMA port was added to the SRR design to allow for the use of a network vector analyser to determine the input impedance of various designs. The optimum design achieved an input resistance of 44 Ω at a resonant frequency of 919 MHz, close to the target values (50 Ω at 915 MHz). Field measurements of the received signal strength from a planar antenna design indicated a gain of 5 dB over a conventional quarter-wave monopole antenna, in a footprint that was 40% smaller than the monopole.

3.
Ultramicroscopy ; 205: 75-83, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31247456

RESUMEN

The most common readout technique used in atomic force microscopy (AFM) is based on optical beam deflection (OBD), which relies on monitoring deflection of the cantilever probe by measuring the position of the laser beam reflected from the free end of the AFM cantilever. Although systems using the OBD readout can achieve subnanometre displacement resolution and video rate imaging speeds, its main limitation is size, which is difficult to minimise, thus limiting multiprobe imaging capability. Currently, system miniaturisation has been accommodated by adopting on-chip electrical readout solutions, often at the expense of measurement sensitivity. To date, no cost-effective AFM readout solution exists without sacrificing either measurement sensitivity, system miniaturisation, or multiprobe array scalability. In this paper we present an AFM probe with integrated on-chip optical interferometric readout based on silicon photonics. Our AFM probe combines the advantages of subnanometre resolution of optical readouts with on-chip miniaturisation. The adopted approach determines deflection of the cantilever using an integrated on-chip photonics waveguide by monitoring the separation between the sensing cantilever and an interrogating grating. The implemented methodology provides ultimate interferometric resolution and sensitivity, on-chip miniaturisation, and array scalability, which makes possible ultrafast multiprobe-array AFM imaging. Using a Digital Instruments D3000 AFM retrofitted with our cantilever probe and integrated readout, we report sub-nanometre AFM topography images obtained on reference samples. We demonstrate RMS static AFM noise level of 19 pm, outperforming the operation of this system in its standard, optical beam deflection configuration (51 pm). The noise spectrum measurements of our probe indicate that the integrated readout is shot noise limited, achieving a deflection noise density (DND) of 36fm/Hz.

4.
J Mech Behav Biomed Mater ; 64: 65-74, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27479895

RESUMEN

The acoustic and mechanical properties of silk membranes of different thicknesses were tested to determine their suitability as a repair material for tympanic membrane perforations. Membranes of different thickness (10-100µm) were tested to determine their frequency response and their resistance to pressure loads in a simulated ear canal model. Their mechanical rigidity to pressure loads was confirmed by tensile testing. These membranes were tested alongside animal cartilage, currently the strongest available myringoplasty graft as well as paper, which is commonly used for simpler procedures. Silk membranes showed resonant frequencies within the human hearing range and a higher vibrational amplitude than cartilage, suggesting that silk may offer good acoustic energy transfer characteristics. Silk membranes were also highly resistant to simulated pressure changes in the middle ear, suggesting they can resist retraction, a common cause of graft failure resulting from chronic negative pressures in the middle ear. Part of this strength can be explained by the substantially higher modulus of silk films compared with cartilage. This allows for the production of films that are much thinner than cartilage, with superior acoustic properties, but that still provide the same level of mechanical support as thicker cartilage. Together, these in vitro results suggest that silk membranes may provide good hearing outcomes while offering similar levels of mechanical support to the reconstructed middle ear.


Asunto(s)
Acústica , Miringoplastia , Seda/uso terapéutico , Perforación de la Membrana Timpánica/cirugía , Animales , Materiales Biocompatibles/uso terapéutico , Cartílago/trasplante , Humanos
5.
Nanoscale ; 7(5): 1927-33, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25529834

RESUMEN

Monitoring the nanomechanical movement of suspended cantilever structures has found use in applications ranging from biological/chemical sensing to atomic force microscopy. Interrogating these sensors relies on the ability to accurately determine the sub-nanometre movements of the cantilever. Here we investigate a technique based on the combination of integrated silicon photonics and microelectromechanical systems (MEMS) to create an optically resonant microcavity and demonstrate its use for monitoring of the position of cantilevers on the picometer scale under ambient conditions with dynamic range extending over several microns. The technique is interferometric, and we show it to be sufficiently sensitive to measure both the first and second modes of cantilever Brownian motion. We anticipate that application of this technique will provide a physically robust, picometer precision, integrated cantilever movement read-out technology which can take cantilever sensors from laboratory controlled environments into real world conditions, allowing everyday applications.

6.
Nanoscale Res Lett ; 9(1): 426, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25221457

RESUMEN

Suspended micromachined porous silicon beams with laterally uniform porosity are reported, which have been fabricated using standard photolithography processes designed for compatibility with complementary metal-oxide-semiconductor (CMOS) processes. Anodization, annealing, reactive ion etching, repeated photolithography, lift off and electropolishing processes were used to release patterned porous silicon microbeams on a Si substrate. This is the first time that micromachined, suspended PS microbeams have been demonstrated with laterally uniform porosity, well-defined anchors and flat surfaces. PACS: 81.16.-c; 81.16.Nd; 81.16.Rf.

7.
Nanoscale Res Lett ; 7(1): 645, 2012 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-23176591

RESUMEN

Transmission diffraction gratings operating at 1,565 nm based on multilayer porous silicon films are modeled, fabricated, and tested. Features down to 2 µm have been patterned into submicron-thick mesoporous films using standard photolithographic and dry etching techniques. After patterning of the top porous film, a second anodization can be performed, allowing an under-layer of highly uniform porosity and thickness to be achieved. High transmission greater than 40% is measured, and modeling results suggest that a change in diffraction efficiency of 1 dB for a 1% change in normalized refractive index can be achieved. Preliminary measurement of solvent vapor shows a large signal change from the grating sensor in agreement with models.

8.
ACS Appl Mater Interfaces ; 4(11): 5833-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23057614

RESUMEN

Silica thin films containing uniformly dispersed lanthanum hexaboride (LaB6) nanoparticles have been prepared by spin-coating a sol-gel silica solution containing cetyltrimethyl ammonium bromide (CTAB)-stabilized LaB6 nanoparticles onto a glass substrate followed by a standard heat treatment. The production of this thin film involved three steps: (i) a CTAB-stabilized LaB6 nanoparticle dispersion was prepared in water and then dried, (ii) the dried nanoparticles were redispersed in a small amount of water and mixed with tetraethoxyorthosilane (TEOS), ethanol, and a little acid to initiate the sol-gel reaction, and (iii) this reaction mixture was spun to produce a thin film and then was annealed. A range of techniques such as zeta potential, laser sizing, energy-filtered transmission electron microscopy (EFTEM), scanning TEM (STEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectrum (EDS) were employed to characterize the particle's size, elemental composition, and stability and the optical properties of silica thin films with LaB6 nanoparticles. On the basis of the optical transmittance and reflectance spectra of an annealed silica thin film with LaB6 nanoparticles, the annealed thin films clearly showed positive absorption of radiation in the near infrared (NIR) region meeting a main objective of this study. A potential optical micro-electromechanical sensing system in the NIR range can be realized on the basis of this silica thin film with LaB6 nanoparticles.


Asunto(s)
Compuestos de Boro/química , Lantano/química , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Dióxido de Silicio/química , Ensayo de Materiales , Tamaño de la Partícula , Refractometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA