Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092905

RESUMEN

BACKGROUND: The use of natural antioxidants and antimicrobials in dairy production can increase the variety of dairy-based products. In this study, the antioxidant and antimicrobial changes in lactic butter samples made from heat-treated creams and enriched with M. communis essential oils (EOs) were investigated. RESULTS: The best lactic butter properties were achieved by optimizing the process at 70 and 80 °C. M. communis EOs decreased lipid oxidation and spoilage microorganism growth in lactic butter during cold storage. M. communis EOs have antioxidant and antimicrobial activity in lactic butter equal to that of ascorbyl palmitate. α-Pinene, p-cymene, limonene, 3-carene, 1,8-cineol, ß-linalool, α-terpineol and myretenol are the major contributors to the antioxidant and antimicrobial activities of M. communis EOs. They exhibit antioxidant activity by neutralizing free radicals by donating hydrogen or acting as termination enhancers, and antimicrobial activity by disruption of cell membranes, which may result in the leakage of macromolecules or the loss of essential metabolites, ultimately leading to cell death during the storage of lactic butter samples. CONCLUSION: The addition of M. communis EOs improves lactic butter stability equal to that of ascorbyl palmitate, and may be applied as a natural and effective preservative to maintain butter from lipid oxidation and microbial spoilage and enhance its safety. PRACTICAL APPLICATIONS: The growing recognition of the health benefits of natural antioxidants, as opposed to synthetic ones, has led to the development of new applications for natural antioxidants. In this regard, M. communis L. EOs can be used to enhance the shelf stability of cold-stored lactic butter. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
J Oleo Sci ; 73(3): 321-331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432996

RESUMEN

Gemlik is a cultivar that grows in a distinct region of Turkiye and is ideal for brine fermentation of brine black table olives. Bursa Protected Designated Origin (PDO) and Izmir non-PDO Gemlik table olives have high levels of oleic acid (74%), total phenol (190 mg/kg), and dry matter (57%), while being low in linoleic acid (8%). The pH values and salt contents were observed to be in the range of 4.1 to 4.3 and 3.9% to 4.8%, respectively. During the fermentation of Gemlik table olives, a mass transfer occurred, resulting in a reduction in reducing sugar and total sugar contents as well as an increase in the salt content of the olives. Despite the reduction of phenolic content in both Gemlik PDO and non-PDO table olives, their antioxidant capacity remains high after fermentation. The oil content, antioxidant activity, phenolic contents, palmitic, palmitoleic, oleic, and linoleic acids were all found to be significant variables in distinguishing between Gemlik PDO and non-PDO table olives using PLS-DA analysis. There is a statistically significant correlation between the phenolic content and oleic (0.588) and linoleic (-0.659) acids (p < 0.05). Bursa PDO and Izmir non-PDO exhibit enhanced nutritional quality and antioxidant activity, unequivocally differentiating them from Hatay and Mersin non-PDO Gemlik table olives with 98% accuracy through discriminant analysis (p < 0.05). PLS-DA and DA can effectively identify variations in the quality of Turkish-style black table olives preserved in brine, originating from PDO and non-PDO growing areas.


Asunto(s)
Olea , Sales (Química) , Antioxidantes , Turquía , Cloruro de Sodio , Fenoles , Cloruro de Sodio Dietético , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA