Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hippocampus ; 34(5): 241-260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415962

RESUMEN

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 µm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.


Asunto(s)
Lóbulo Temporal , Humanos , Lóbulo Temporal/patología , Neuroanatomía/métodos , Masculino , Giro Parahipocampal/patología , Giro Parahipocampal/diagnóstico por imagen , Femenino , Anciano , Corteza Entorrinal/patología , Corteza Entorrinal/anatomía & histología , Laboratorios , Anciano de 80 o más Años
2.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37292729

RESUMEN

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.

3.
Elife ; 122023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37956092

RESUMEN

The hippocampus is an archicortical structure, consisting of subfields with unique circuits. Understanding its microstructure, as proxied by these subfields, can improve our mechanistic understanding of learning and memory and has clinical potential for several neurological disorders. One prominent issue is how to parcellate, register, or retrieve homologous points between two hippocampi with grossly different morphologies. Here, we present a surface-based registration method that solves this issue in a contrast-agnostic, topology-preserving manner. Specifically, the entire hippocampus is first analytically unfolded, and then samples are registered in 2D unfolded space based on thickness, curvature, and gyrification. We demonstrate this method in seven 3D histology samples and show superior alignment with respect to subfields using this method over more conventional registration approaches.


Asunto(s)
Hipocampo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Lóbulo Temporal , Técnicas Histológicas
4.
Handb Clin Neurol ; 187: 17-51, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35964970

RESUMEN

The temporal cortex encompasses a large number of different areas ranging from the six-layered isocortex to the allocortex. The areas support auditory, visual, and language processing, as well as emotions and memory. The primary auditory cortex is found at the Heschl gyri, which develop early in ontogeny with the Sylvian fissure, a deep and characteristic fissure that separates the temporal lobe from the parietal and frontal lobes. Gyri and sulci as well as brain areas vary between brains and between hemispheres, partly linked to the functional organization of language and lateralization. Interindividual variability in anatomy makes a direct comparison between different brains in structure-functional analysis often challenging, but can be addressed by applying cytoarchitectonic probability maps of the Julich-Brain atlas. We review the macroanatomy of the temporal lobe, its variability and asymmetry at the macro- and the microlevel, discuss the relationship to brain areas and their microstructure, and emphasize the advantage of a multimodal approach to address temporal lobe organization. We review recent data on combined cytoarchitectonic and molecular architectonic studies of temporal areas, and provide links to their function.


Asunto(s)
Corteza Auditiva , Lóbulo Temporal , Encéfalo/anatomía & histología , Lóbulo Frontal/anatomía & histología , Humanos , Lenguaje , Lóbulo Temporal/anatomía & histología
5.
Brain Struct Funct ; 225(3): 881-907, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31955294

RESUMEN

The human hippocampal formation is relevant for various aspects of memory and learning, and the different hippocampal regions are differentially affected by neuropsychiatric disorders. Therefore, the hippocampal formation has been subject of numerous cytoarchitectonic and other mapping studies, which resulted in divergent parcellation schemes. To understand the principles of hippocampal architecture, it is necessary to integrate different levels of hippocampal organisation, going beyond one modality. We here applied a multimodal mapping approach combining cyto- and multi-receptorarchitectonic analyses, and generated probabilistic maps in stereotaxic space of the identified regions. Cytoarchitecture in combination with the regional and laminar distribution of 15 neurotransmitter receptors visualized by in vitro receptor autoradiography were analysed in seven hemispheres from 6 unfixed shock frozen and serially sectioned brains. Cytoarchitectonic delineations for generation of probabilistic maps were carried out on histological sections from ten fixed, paraffin embedded and serially sectioned brains. Nine cyto- and receptorarchitectonically distinct regions were identified within the hippocampal formation (i.e., fascia dentata, cornu Ammonis (CA) regions 1-4, prosubiculum, subiculum proper, presubiculum and parasubiculum), as well as the hippocampal-amygdaloid transition area and the periallocortical transsubiculum. Subsequently generated probabilistic maps quantify intersubject variability in the size and extent of these cyto- and receptorarchitectonically distinct regions. The regions did not differ in their volume between the hemispheres and gender. Receptor mapping revealed additional subdivisions which could not be detected by cytoarchitectonic analysis alone. They correspond to parcellations previously found in immunohistochemical and connectivity studies. The multimodal approach enabled the definition of regions not consistently reported, e.g., CA4 region or prosubiculum. The ensuing detailed probabilistic maps of the hippocampal formation constitute the basis for future architectonically informed analyses of in vivo neuroimaging studies.


Asunto(s)
Hipocampo/citología , Hipocampo/metabolismo , Neuronas/citología , Neuronas/metabolismo , Receptores de Neurotransmisores/metabolismo , Anciano , Autorradiografía , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos
6.
Alzheimers Dement (Amst) ; 11: 439-449, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31245529

RESUMEN

INTRODUCTION: Heterogeneity of segmentation protocols for medial temporal lobe regions and hippocampal subfields on in vivo magnetic resonance imaging hinders the ability to integrate findings across studies. We aim to develop a harmonized protocol based on expert consensus and histological evidence. METHODS: Our international working group, funded by the EU Joint Programme-Neurodegenerative Disease Research (JPND), is working toward the production of a reliable, validated, harmonized protocol for segmentation of medial temporal lobe regions. The working group uses a novel postmortem data set and online consensus procedures to ensure validity and facilitate adoption. RESULTS: This progress report describes the initial results and milestones that we have achieved to date, including the development of a draft protocol and results from the initial reliability tests and consensus procedures. DISCUSSION: A harmonized protocol will enable the standardization of segmentation methods across laboratories interested in medial temporal lobe research worldwide.

7.
Brain Struct Funct ; 223(4): 1637-1666, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29188378

RESUMEN

The human amygdala consists of subdivisions contributing to various functions. However, principles of structural organization at the cellular and molecular level are not well understood. Thus, we re-analyzed the cytoarchitecture of the amygdala and generated cytoarchitectonic probabilistic maps of ten subdivisions in stereotaxic space based on novel workflows and mapping tools. This parcellation was then used as a basis for analyzing the receptor expression for 15 receptor types. Receptor fingerprints, i.e., the characteristic balance between densities of all receptor types, were generated in each subdivision to comprehensively visualize differences and similarities in receptor architecture between the subdivisions. Fingerprints of the central and medial nuclei and the anterior amygdaloid area were highly similar. Fingerprints of the lateral, basolateral and basomedial nuclei were also similar to each other, while those of the remaining nuclei were distinct in shape. Similarities were further investigated by a hierarchical cluster analysis: a two-cluster solution subdivided the phylogenetically older part (central, medial nuclei, anterior amygdaloid area) from the remaining parts of the amygdala. A more fine-grained three-cluster solution replicated our previous parcellation including a laterobasal, superficial and centromedial group. Furthermore, it helped to better characterize the paralaminar nucleus with a molecular organization in-between the laterobasal and the superficial group. The multimodal cyto- and receptor-architectonic analysis of the human amygdala provides new insights into its microstructural organization, intersubject variability, localization in stereotaxic space and principles of receptor-based neurochemical differences.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Mapeo Encefálico , Vías Nerviosas/metabolismo , Receptores de Neurotransmisores/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/efectos de los fármacos , Autopsia , Autorradiografía , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Neurotransmisores/farmacocinética , Tritio/farmacocinética
8.
Neuroscience ; 349: 330-340, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28315444

RESUMEN

Spontaneous epileptiform activity has previously been observed in lateral amygdala (LA) slices derived from patients with intractable-temporal lobe epilepsy. The present study aimed to characterize intranuclear LA synaptic connectivity and to test the hypothesis that differences in the spread of flow of neuronal activity may relate to spontaneous epileptiform activity occurrence. Electrical activity was evoked through electrical microstimulation in acute human brain slices containing the LA, signals were recorded as local field potentials combined with fast optical imaging of voltage-sensitive dye fluorescence. Sites of stimulation and recording were systematically varied. Following recordings, slices were anatomically reconstructed using two-dimensional unitary slices as a reference for coronal and parasagittal planes. Local spatial patterns and spread of activity were assessed by incorporating the coordinates of electrical and optical recording sites into the respective unitary slice. A preferential directional spread of evoked electrical signals was observed from ventral to dorsal, rostral to caudal and medial to lateral regions in the LA. No differences in spread of evoked activity were observed between spontaneously and non-spontaneously active LA slices, i.e. basic properties of evoked synaptic responses were similar in the two functional types of LA slices, including input-output relationship, and paired-pulse depression. These results indicate a directed propagation of synaptic signals within the human LA in spontaneously active epileptic slices. We suggest that the lack of differences in local and in systemic information processing has to be found in confined epileptiform circuits within the amygdala likely involving well-known "epileptic neurons".


Asunto(s)
Amígdala del Cerebelo/fisiología , Potenciales Evocados/fisiología , Red Nerviosa/fisiología , Sinapsis/fisiología , Adolescente , Adulto , Estimulación Eléctrica/métodos , Epilepsia/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Hippocampus ; 27(1): 3-11, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27862600

RESUMEN

The advent of high-resolution magnetic resonance imaging (MRI) has enabled in vivo research in a variety of populations and diseases on the structure and function of hippocampal subfields and subdivisions of the parahippocampal gyrus. Because of the many extant and highly discrepant segmentation protocols, comparing results across studies is difficult. To overcome this barrier, the Hippocampal Subfields Group was formed as an international collaboration with the aim of developing a harmonized protocol for manual segmentation of hippocampal and parahippocampal subregions on high-resolution MRI. In this commentary we discuss the goals for this protocol and the associated key challenges involved in its development. These include differences among existing anatomical reference materials, striking the right balance between reliability of measurements and anatomical validity, and the development of a versatile protocol that can be adopted for the study of populations varying in age and health. The commentary outlines these key challenges, as well as the proposed solution of each, with concrete examples from our working plan. Finally, with two examples, we illustrate how the harmonized protocol, once completed, is expected to impact the field by producing measurements that are quantitatively comparable across labs and by facilitating the synthesis of findings across different studies. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Hipocampo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Giro Parahipocampal/diagnóstico por imagen , Humanos , Reconocimiento de Normas Patrones Automatizadas
10.
Brain ; 134(Pt 10): 2929-47, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21893592

RESUMEN

While the amygdala is considered to play a critical role in temporal lobe epilepsy, conclusions on underlying pathophysiological mechanisms have been derived largely from experimental animal studies. Therefore, the present study aimed to characterize synaptic network interactions, focusing on spontaneous interictal-like activity, and the expression profile of transmitter receptors in the human lateral amygdala in relation to temporal lobe epilepsy. Electrophysiological recordings, obtained intra-operatively in vivo in patients with medically intractable temporal lobe epilepsy, revealed the existence of interictal activity in amygdala and hippocampus. For in vitro analyses, slices were prepared from surgically resected specimens, and sections from individual specimens were used for electrophysiological recordings, receptor autoradiographic analyses and histological visualization of major amygdaloid nuclei for verification of recording sites. In the lateral amygdala, interictal-like activity appeared as spontaneous slow rhythmic field potentials at an average frequency of 0.39 Hz, which occurred at different sites with various degrees of synchronization in 33.3% of the tested slices. Pharmacological blockade of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, but not N-methyl-D-aspartate receptors, abolished interictal-like activity, while the γ-aminobutyric acid A-type receptor antagonist bicuculline resulted in a dampening of activity, followed by highly synchronous patterns of slow rhythmic activity during washout. Receptor autoradiographic analysis revealed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, metabotropic glutamate type 2/3, muscarinic type 2 and adrenoceptor α(1) densities, whereas muscarinergic type 3 and serotonergic type 1A receptor densities were lower in the lateral amygdala from epileptic patients in comparison to autopsy controls. Concerning γ-aminobutyric acid A-type receptors, agonist binding was unaltered whereas antagonist binding sites were downregulated in the epileptic lateral amygdala, suggesting an altered high/low-affinity state ratio and concomitant reduced pool of total γ-aminobutyric acid A-type receptors. Together these data indicate an abnormal pattern of receptor densities and synaptic function in the lateral nucleus of the amygdala in epileptic patients, involving critical alterations in glutamate and γ-aminobutyric acid receptors, which may give rise to domains of spontaneous interictal discharges contributing to seizure activity in the amygdala.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Epilepsia/fisiopatología , Red Nerviosa/fisiopatología , Sinapsis/fisiología , Adolescente , Adulto , Anciano , Amígdala del Cerebelo/metabolismo , Niño , Epilepsia/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/metabolismo , Neuronas/metabolismo , Receptor Muscarínico M2/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Receptores AMPA/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...