Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(1): 572-585, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38113354

RESUMEN

Screening of ultra-low-molecular weight ligands (MiniFrags) successfully identified viable chemical starting points for a variety of drug targets. Here we report the electrophilic analogues of MiniFrags that allow the mapping of potential binding sites for covalent inhibitors by biochemical screening and mass spectrometry. Small electrophilic heterocycles and their N-quaternized analogues were first characterized in the glutathione assay to analyze their electrophilic reactivity. Next, the library was used for systematic mapping of potential covalent binding sites available in human histone deacetylase 8 (HDAC8). The covalent labeling of HDAC8 cysteines has been proven by tandem mass spectrometry measurements, and the observations were explained by mutating HDAC8 cysteines. As a result, screening of electrophilic MiniFrags identified three potential binding sites suitable for the development of allosteric covalent HDAC8 inhibitors. One of the hit fragments was merged with a known HDAC8 inhibitor fragment using different linkers, and the linker length was optimized to result in a lead-like covalent inhibitor.


Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Humanos , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Sitios de Unión , Espectrometría de Masas en Tándem , Ligandos , Proteínas Represoras/metabolismo
2.
Molecules ; 28(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049805

RESUMEN

SuFEx chemistry is based on the unique reactivity of the sulfonyl fluoride group with a range of nucleophiles. Accordingly, sulfonyl fluorides label multiple nucleophilic amino acid residues, making these reagents popular in both chemical biology and medicinal chemistry applications. The reactivity of sulfonyl fluorides nominates this warhead chemotype as a candidate for an external, activation-free general labelling tag. Here, we report the synthesis and characterization of a small sulfonyl fluoride library that yielded the 3-carboxybenzenesulfonyl fluoride warhead for tagging tractable targets at nucleophilic residues. Based on these results, we propose that coupling diverse fragments to this warhead would result in a library of sulfonyl fluoride bits (SuFBits), available for screening against protein targets. SuFBits will label the target if it binds to the core fragment, which facilitates the identification of weak fragments by mass spectrometry.


Asunto(s)
Aminoácidos , Fluoruros , Fluoruros/química , Aminoácidos/química , Ácidos Sulfínicos/química , Espectrometría de Masas
3.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36558935

RESUMEN

Heterocyclic electrophiles as small covalent fragments showed promising inhibitory activity on the antibacterial target MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase, EC:2.5.1.7). Here, we report the second generation of heterocyclic electrophiles: the quaternized analogue of the heterocyclic covalent fragment library with improved reactivity and MurA inhibitory potency. Quantum chemical reaction barrier calculations, GSH (L-glutathione) reactivity assay, and thrombin counter screen were also used to demonstrate and explain the improved reactivity and selectivity of the N-methylated heterocycles and to compare the two generations of heterocyclic electrophiles.

4.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153141

RESUMEN

Drug discovery programs against the antibacterial target UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) have already resulted in covalent inhibitors having small three- and five-membered heterocyclic rings. In the current study, the reactivity of four-membered rings was carefully modulated to obtain a novel family of covalent MurA inhibitors. Screening a small library of cyclobutenone derivatives led to the identification of bromo-cyclobutenaminones as new electrophilic warheads. The electrophilic reactivity and cysteine specificity have been determined in a glutathione (GSH) and an oligopeptide assay, respectively. Investigating the structure-activity relationship for MurA suggests a crucial role for the bromine atom in the ligand. In addition, MS/MS experiments have proven the covalent labelling of MurA at Cys115 and the observed loss of the bromine atom suggests a net nucleophilic substitution as the covalent reaction. This new set of compounds might be considered as a viable chemical starting point for the discovery of new MurA inhibitors.

5.
Nat Commun ; 11(1): 5047, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028810

RESUMEN

COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.


Asunto(s)
Betacoronavirus/química , Cisteína Endopeptidasas/química , Fragmentos de Péptidos/química , Proteínas no Estructurales Virales/química , Betacoronavirus/enzimología , Sitios de Unión , Dominio Catalítico , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Diseño de Fármacos , Espectrometría de Masas , Modelos Moleculares , Fragmentos de Péptidos/metabolismo , Conformación Proteica , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Electricidad Estática , Proteínas no Estructurales Virales/metabolismo
6.
Drug Discov Today ; 25(6): 983-996, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32298798

RESUMEN

Targeted covalent inhibitors and chemical probes have become integral parts of drug discovery approaches. Given the advantages of fragment-based drug discovery, screening electrophilic fragments emerged as a promising alternative to discover and validate novel targets and to generate viable chemical starting points even for targets that are barely tractable. In this review, we present recent principles and considerations in the design of electrophilic fragment libraries from the selection of the appropriate covalent warhead through the design of the covalent fragment to the compilation of the library. We then summarize recent screening methodologies of covalent fragments against surrogate models, proteins, and the whole proteome, or living cells. Finally, we highlight recent drug discovery applications of covalent fragment libraries.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/farmacología , Descubrimiento de Drogas/métodos , Humanos , Proteínas/metabolismo , Proteoma/efectos de los fármacos
7.
Arch Pharm (Weinheim) ; 351(12): e1800184, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30461051

RESUMEN

An electrophilic fragment library of small heterocycles was developed and characterized in the surrogate GSH-reactivity assay and aqueous stability test that revealed their potential as covalent warheads. Screening the library against MurA from Staphylococcus aureus (MurASA ) and Escherichia coli (MurAEC ) identified heterocyclic fragments with significant inhibitory potency. The validated heterocyclic warhead library might be useful for developing targeted covalent inhibitors for other targets of interest with a new design strategy incorporating heterocyclic electrophiles as warheads.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Antibacterianos/síntesis química , Proteínas Bacterianas/antagonistas & inhibidores , Compuestos Heterocíclicos/síntesis química , Transferasas Alquil y Aril/química , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Escherichia coli/efectos de los fármacos , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...