Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Clin Invest ; 134(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37962958

RESUMEN

Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.


Asunto(s)
Trastornos del Neurodesarrollo , Empalmosomas , Humanos , Empalmosomas/genética , Redes Reguladoras de Genes , Trastornos del Neurodesarrollo/genética , Mutación Missense , Empalme del ARN , Factores de Empalme de ARN/genética , Proteínas Nucleares/genética , Enzimas Reparadoras del ADN/genética
2.
Genet Med ; 25(7): 100861, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37087635

RESUMEN

PURPOSE: This study aimed to establish variants in CBX1, encoding heterochromatin protein 1ß (HP1ß), as a cause of a novel syndromic neurodevelopmental disorder. METHODS: Patients with CBX1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. To investigate the pathogenicity of identified variants, we performed in vitro cellular assays and neurobehavioral and cytological analyses of neuronal cells obtained from newly generated Cbx1 mutant mouse lines. RESULTS: In 3 unrelated individuals with developmental delay, hypotonia, and autistic features, we identified heterozygous de novo variants in CBX1. The identified variants were in the chromodomain, the functional domain of HP1ß, which mediates interactions with chromatin. Cbx1 chromodomain mutant mice displayed increased latency-to-peak response, suggesting the possibility of synaptic delay or myelination deficits. Cytological and chromatin immunoprecipitation experiments confirmed the reduction of mutant HP1ß binding to heterochromatin, whereas HP1ß interactome analysis demonstrated that the majority of HP1ß-interacting proteins remained unchanged between the wild-type and mutant HP1ß. CONCLUSION: These collective findings confirm the role of CBX1 in developmental disabilities through the disruption of HP1ß chromatin binding during neurocognitive development. Because HP1ß forms homodimers and heterodimers, mutant HP1ß likely sequesters wild-type HP1ß and other HP1 proteins, exerting dominant-negative effects.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Heterocromatina , Animales , Ratones , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Histonas/genética , Histonas/metabolismo
3.
HGG Adv ; 4(1): 100157, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36408368

RESUMEN

WDR5 is a broadly studied, highly conserved key protein involved in a wide array of biological functions. Among these functions, WDR5 is a part of several protein complexes that affect gene regulation via post-translational modification of histones. We collected data from 11 unrelated individuals with six different rare de novo germline missense variants in WDR5; one identical variant was found in five individuals and another variant in two individuals. All individuals had neurodevelopmental disorders including speech/language delays (n = 11), intellectual disability (n = 9), epilepsy (n = 7), and autism spectrum disorder (n = 4). Additional phenotypic features included abnormal growth parameters (n = 7), heart anomalies (n = 2), and hearing loss (n = 2). Three-dimensional protein structures indicate that all the residues affected by these variants are located at the surface of one side of the WDR5 protein. It is predicted that five out of the six amino acid substitutions disrupt interactions of WDR5 with RbBP5 and/or KMT2A/C, as part of the COMPASS (complex proteins associated with Set1) family complexes. Our experimental approaches in Drosophila melanogaster and human cell lines show normal protein expression, localization, and protein-protein interactions for all tested variants. These results, together with the clustering of variants in a specific region of WDR5 and the absence of truncating variants so far, suggest that dominant-negative or gain-of-function mechanisms might be at play. All in all, we define a neurodevelopmental disorder associated with missense variants in WDR5 and a broad range of features. This finding highlights the important role of genes encoding COMPASS family proteins in neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista , Proteínas de Drosophila , Trastornos del Desarrollo del Lenguaje , Trastornos del Neurodesarrollo , Animales , Humanos , Trastorno del Espectro Autista/genética , Drosophila melanogaster/genética , Trastornos del Neurodesarrollo/genética , Análisis por Conglomerados , Cromatina , Péptidos y Proteínas de Señalización Intracelular/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Drosophila/genética
4.
Genet Med ; 24(11): 2351-2366, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36083290

RESUMEN

PURPOSE: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Fenotipo , Trastornos del Neurodesarrollo/genética , Vía de Señalización Wnt/genética , Discapacidad Intelectual/genética , Genómica , beta Catenina/genética
5.
Am J Med Genet A ; 188(12): 3416-3422, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35906847

RESUMEN

Telemedicine has long been considered as an attractive alternative methodology in clinical genetics to improve patient access and convenience. Given the importance of the dysmorphology physical examination and anthropometric measurement in clinical genetics, many have wondered if lost information would hamper diagnosis. We previously addressed this question by analyzing thousands of diagnostic encounters in a single practice involving multiple practitioners and found no evidence for a difference in new molecular diagnosis rates. However, our previous study design resulted in variability in providers between in-person and telemedicine evaluation groups. To address this in our present study, we expanded our analysis to 1104 new patient evaluations seen by one highly experienced clinical geneticist across two 10-month periods before and after the start of the COVID-19 pandemic. Comparing patients seen in-person to those seen by telemedicine, we found significant differences in race and ethnicity, preferred language, and home zip code median income. The clinical geneticist intended to send more genetic testing for those patients seen by telemedicine, but due to issues with test authorization and sample collection, there was no difference in ultimate completion rate between groups. We found no significant difference in new molecular diagnosis rate. Overall, we find telemedicine to be an acceptable alternative to in-person evaluation for routine pediatric clinical genetics care.


Asunto(s)
COVID-19 , Médicos , Telemedicina , Niño , Humanos , Pandemias , COVID-19/diagnóstico , COVID-19/epidemiología , Telemedicina/métodos
6.
Genet Med ; 24(3): 631-644, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34906488

RESUMEN

PURPOSE: We previously defined biallelic HYAL2 variants causing a novel disorder in 2 families, involving orofacial clefting, facial dysmorphism, congenital heart disease, and ocular abnormalities, with Hyal2 knockout mice displaying similar phenotypes. In this study, we better define the phenotype and pathologic disease mechanism. METHODS: Clinical and genomic investigations were undertaken alongside molecular studies, including immunoblotting and immunofluorescence analyses of variant/wild-type human HYAL2 expressed in mouse fibroblasts, and in silico modeling of putative pathogenic variants. RESULTS: Ten newly identified individuals with this condition were investigated, and they were associated with 9 novel pathogenic variants. Clinical studies defined genotype-phenotype correlations and confirmed a recognizable craniofacial phenotype in addition to myopia, cleft lip/palate, and congenital cardiac anomalies as the most consistent manifestations of the condition. In silico modeling of missense variants identified likely deleterious effects on protein folding. Consistent with this, functional studies indicated that these variants cause protein instability and a concomitant cell surface absence of HYAL2 protein. CONCLUSION: These studies confirm an association between HYAL2 alterations and syndromic cleft lip/palate, provide experimental evidence for the pathogenicity of missense alleles, enable further insights into the pathomolecular basis of the disease, and delineate the core and variable clinical outcomes of the condition.


Asunto(s)
Labio Leporino , Fisura del Paladar , Alelos , Animales , Moléculas de Adhesión Celular/genética , Labio Leporino/genética , Fisura del Paladar/genética , Proteínas Ligadas a GPI/genética , Estudios de Asociación Genética , Humanos , Hialuronoglucosaminidasa/genética , Ratones , Fenotipo
7.
Mol Autism ; 12(1): 69, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702355

RESUMEN

BACKGROUND: De novo variants in the voltage-gated calcium channel subunit α1 E gene (CACNA1E) have been described as causative of epileptic encephalopathy with contractures, macrocephaly and dyskinesias. METHODS: Following the observation of an index patient with developmental delay and autism spectrum disorder (ASD) without seizures who had a de novo deleterious CACNA1E variant, we screened GeneMatcher for other individuals with CACNA1E variants and neurodevelopmental phenotypes without epilepsy. The spectrum of pathogenic CACNA1E variants was compared to the mutational landscape of variants in the gnomAD control population database. RESULTS: We identified seven unrelated individuals with intellectual disability, developmental regression and ASD-like behavioral profile, and notably without epilepsy, who had de novo heterozygous putatively pathogenic variants in CACNA1E. Age of onset of clinical manifestation, presence or absence of regression and degree of severity were variable, and no clear-cut genotype-phenotype association could be recognized. The analysis of disease-associated variants and their comparison to benign variants from the control population allowed for the identification of regions in the CACNA1E protein that seem to be intolerant to substitutions and thus more likely to harbor pathogenic variants. As in a few reported cases with CACNA1E variants and epilepsy, one patient showed a positive clinical behavioral response to topiramate, a specific calcium channel modulator. LIMITATIONS: The significance of our study is limited by the absence of functional experiments of the effect of identified variants, the small sample size and the lack of systematic ASD assessment in all participants. Moreover, topiramate was given to one patient only and for a short period of time. CONCLUSIONS: Our results indicate that CACNA1E variants may result in neurodevelopmental disorders without epilepsy and expand the mutational and phenotypic spectrum of this gene. CACNA1E deserves to be included in gene panels for non-specific developmental disorders, including ASD, and not limited to patients with seizures, to improve diagnostic recognition and explore the possible efficacy of topiramate.


Asunto(s)
Trastorno del Espectro Autista , Canales de Calcio Tipo R , Proteínas de Transporte de Catión , Discapacidad Intelectual , Trastorno del Espectro Autista/genética , Canales de Calcio Tipo R/genética , Proteínas de Transporte de Catión/genética , Niño , Discapacidades del Desarrollo , Humanos , Discapacidad Intelectual/genética , Fenotipo , Convulsiones/genética , Cognición Social
8.
Am J Med Genet A ; 185(6): 1649-1665, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33783954

RESUMEN

Wiedemann-Steiner syndrome (WSS) is an autosomal dominant disorder caused by monoallelic variants in KMT2A and characterized by intellectual disability and hypertrichosis. We performed a retrospective, multicenter, observational study of 104 individuals with WSS from five continents to characterize the clinical and molecular spectrum of WSS in diverse populations, to identify physical features that may be more prevalent in White versus Black Indigenous People of Color individuals, to delineate genotype-phenotype correlations, to define developmental milestones, to describe the syndrome through adulthood, and to examine clinicians' differential diagnoses. Sixty-nine of the 82 variants (84%) observed in the study were not previously reported in the literature. Common clinical features identified in the cohort included: developmental delay or intellectual disability (97%), constipation (63.8%), failure to thrive (67.7%), feeding difficulties (66.3%), hypertrichosis cubiti (57%), short stature (57.8%), and vertebral anomalies (46.9%). The median ages at walking and first words were 20 months and 18 months, respectively. Hypotonia was associated with loss of function (LoF) variants, and seizures were associated with non-LoF variants. This study identifies genotype-phenotype correlations as well as race-facial feature associations in an ethnically diverse cohort, and accurately defines developmental trajectories, medical comorbidities, and long-term outcomes in individuals with WSS.


Asunto(s)
Predisposición Genética a la Enfermedad , Trastornos del Crecimiento/genética , N-Metiltransferasa de Histona-Lisina/genética , Hipertricosis/congénito , Discapacidad Intelectual/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Población Negra/genética , Estreñimiento/epidemiología , Estreñimiento/genética , Estreñimiento/patología , Insuficiencia de Crecimiento/epidemiología , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/patología , Estudios de Asociación Genética , Trastornos del Crecimiento/epidemiología , Trastornos del Crecimiento/patología , Humanos , Hipertricosis/epidemiología , Hipertricosis/genética , Hipertricosis/patología , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/patología , Mutación con Pérdida de Función/genética , Estudios Retrospectivos , Población Blanca/genética
9.
Am J Med Genet A ; 185(5): 1486-1493, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33683002

RESUMEN

The RASopathies are a group of similar genetic syndromes with cardiovascular abnormalities, characteristic facial features, short stature, abnormalities of the skin and musculoskeletal system, and variable neurodevelopmental challenges. The most common cardiovascular abnormalities include pulmonary valvular stenosis and hypertrophic cardiomyopathy. Congenital polyvalvular disease (CPVD) refers to congenital dysplasia of two or more cardiac valves. We diagnosed a RASopathy in two individuals with CPVD and noted that CPVD in RASopathies has rarely been reported in the literature. Thus, we performed a retrospective chart review and literature review to investigate the association and characterize the phenotype of CPVD in the RASopathies. CPVD was present in 2.5% (n = 6/243) of individuals in our RASopathy cohort. Involvement of two cardiac valves, commonly the aortic and pulmonic valves, was seen in the majority of individuals (6/8; 75%) in our cohort, but only 27% (3/11) of reported CPVD and RASopathy cases in the literature. CPVD should be considered an associated cardiovascular phenotype of the RASopathies, which has implications for diagnosis and management.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Proto-Oncogénicas B-raf/genética , Estenosis de la Válvula Pulmonar/genética , Adolescente , Válvula Aórtica/patología , Cardiomiopatía Hipertrófica/epidemiología , Cardiomiopatía Hipertrófica/patología , Anomalías Cardiovasculares/epidemiología , Anomalías Cardiovasculares/genética , Anomalías Cardiovasculares/patología , Niño , Preescolar , Enanismo/genética , Enanismo/patología , Facies , Femenino , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Humanos , Lactante , Recién Nacido , Masculino , Anomalías Musculoesqueléticas/epidemiología , Anomalías Musculoesqueléticas/genética , Anomalías Musculoesqueléticas/patología , Síndrome de Noonan , Fenotipo , Estenosis de la Válvula Pulmonar/epidemiología , Estenosis de la Válvula Pulmonar/patología , Anomalías Cutáneas/genética , Anomalías Cutáneas/patología , Proteínas ras/genética
10.
Am J Med Genet A ; 182(12): 2926-2938, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33043588

RESUMEN

Pathogenic variants in the homologous and highly conserved genes-CREBBP and EP300-are causal for Rubinstein-Taybi syndrome (RSTS). CREBBP and EP300 encode histone acetyltransferases (HAT) that act as transcriptional co-activators, and their haploinsufficiency causes the pathology characteristic of RSTS by interfering with global transcriptional regulation. Though generally a well-characterized syndrome, there is a clear phenotypic spectrum; rare associations have emerged with increasing diagnosis that is critical for comprehensive understanding of this rare syndrome. We present 12 unreported patients with RSTS found to have EP300 variants discovered through gene sequencing and chromosomal microarray. Our cohort highlights rare phenotypic features associated with EP300 variants, including imperforate anus, retained fetal finger pads, and spina bifida occulta. Our findings support the previously noted prevalence of pregnancy-related hypertension/preeclampsia seen with this disease. We additionally performed a meta-analysis on our newly reported 12 patients and 62 of the 90 previously reported patients. We demonstrated no statistically significant correlation between phenotype severity (within the domains of intellectual disability and major organ involvement, as defined in our Methods section) and variant location and type; this is in contrast to the conclusions of some smaller studies and highlights the importance of large patient cohorts in characterization of this rare disease.


Asunto(s)
Proteína p300 Asociada a E1A/genética , Mutación , Síndrome de Rubinstein-Taybi/patología , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Pronóstico , Síndrome de Rubinstein-Taybi/genética
11.
Eur J Hum Genet ; 28(10): 1422-1431, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32483341

RESUMEN

There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 (CHD3), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain. All patients were detected with unbiased molecular genetic methods. There is not a significant difference in the clinical or facial features of patients with variants in or outside this domain. These additional patients further expand the clinical and molecular data associated with CHD3 variants. Importantly we conclude that there is not a significant difference in the phenotypic features of patients with various molecular disruptions, including whole gene deletions and duplications, and missense variants outside the ATPase/helicase domain. This data will aid both clinical geneticists and molecular geneticists in the diagnosis of this emerging syndrome.


Asunto(s)
Anomalías Craneofaciales/genética , ADN Helicasas/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Adolescente , Adulto , Dominio Catalítico , Niño , Preescolar , Anomalías Craneofaciales/patología , ADN Helicasas/química , Discapacidades del Desarrollo/patología , Femenino , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Mutación , Fenotipo , Síndrome
12.
Genet Med ; 22(8): 1338-1347, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32424177

RESUMEN

PURPOSE: Genitopatellar syndrome and Say-Barber-Biesecker-Young-Simpson syndrome are caused by variants in the KAT6B gene and are part of a broad clinical spectrum called KAT6B disorders, whose variable expressivity is increasingly being recognized. METHODS: We herein present the phenotypes of 32 previously unreported individuals with a molecularly confirmed diagnosis of a KAT6B disorder, report 24 new pathogenic KAT6B variants, and review phenotypic information available on all published individuals with this condition. We also suggest a classification of clinical subtypes within the KAT6B disorder spectrum. RESULTS: We demonstrate that cerebral anomalies, optic nerve hypoplasia, neurobehavioral difficulties, and distal limb anomalies other than long thumbs and great toes, such as polydactyly, are more frequently observed than initially reported. Intestinal malrotation and its serious consequences can be present in affected individuals. Additionally, we identified four children with Pierre Robin sequence, four individuals who had increased nuchal translucency/cystic hygroma prenatally, and two fetuses with severe renal anomalies leading to renal failure. We also report an individual in which a pathogenic variant was inherited from a mildly affected parent. CONCLUSION: Our work provides a comprehensive review and expansion of the genotypic and phenotypic spectrum of KAT6B disorders that will assist clinicians in the assessment, counseling, and management of affected individuals.


Asunto(s)
Blefarofimosis , Discapacidad Intelectual , Blefarofimosis/genética , Exones , Histona Acetiltransferasas/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Mutación
13.
Am J Hum Genet ; 105(5): 987-995, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31587868

RESUMEN

NKAP is a ubiquitously expressed nucleoplasmic protein that is currently known as a transcriptional regulatory molecule via its interaction with HDAC3 and spliceosomal proteins. Here, we report a disorder of transcriptional regulation due to missense mutations in the X chromosome gene, NKAP. These mutations are clustered in the C-terminal region of NKAP where NKAP interacts with HDAC3 and post-catalytic spliceosomal complex proteins. Consistent with a role for the C-terminal region of NKAP in embryogenesis, nkap mutant zebrafish with a C-terminally truncated NKAP demonstrate severe developmental defects. The clinical features of affected individuals are highly conserved and include developmental delay, hypotonia, joint contractures, behavioral abnormalities, Marfanoid habitus, and scoliosis. In affected cases, transcriptome analysis revealed the presence of a unique transcriptome signature, which is characterized by the downregulation of long genes with higher exon numbers. These observations indicate the critical role of NKAP in transcriptional regulation and demonstrate that perturbations of the C-terminal region lead to developmental defects in both humans and zebrafish.


Asunto(s)
Disfunción Cognitiva/genética , Mutación Missense/genética , Proteínas Represoras/genética , Transcripción Genética/genética , Secuencia de Aminoácidos , Animales , Regulación hacia Abajo/genética , Exones/genética , Regulación de la Expresión Génica/genética , Genes Ligados a X/genética , Histona Desacetilasas/genética , Humanos , Alineación de Secuencia , Transcriptoma/genética , Pez Cebra/genética
14.
Am J Med Genet A ; 179(10): 2144-2151, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31287223

RESUMEN

Warsaw breakage syndrome (WABS), caused by bi-allelic variants in the DDX11 gene, is a rare cohesinopathy characterized by pre- and postnatal growth retardation, microcephaly, intellectual disability, facial dysmorphia, and sensorineural hearing loss due to cochlear hypoplasia. The DDX11 gene codes for an iron-sulfur DNA helicase in the Superfamily 2 helicases and plays an important role in genomic stability and maintenance. Fourteen individuals with WABS have been previously reported in the medical literature. Affected individuals have been of various ethnic backgrounds with different pathogenic variants. We report two unrelated individuals of Ashkenazi Jewish descent affected with WABS, who are homozygous for the c.1763-1G>C variant in the DDX11 gene. Their phenotype is consistent with previously reported individuals. RNA studies showed that this variant causes an alternative splice acceptor site leading to a frameshift in the open reading frame. Carrier screening of the c.1763-1G>C variant in the Jewish population revealed a high carrier frequency of 1 in 68 in the Ashkenazi Jewish population. Due to the high carrier frequency and the low number of affected individuals, we hypothesize a high rate of miscarriage of homozygous fetuses and/or subfertility for carrier couples. If the carrier frequency is reproducible in additional Ashkenazi Jewish populations, we suggest including DDX11 to Ashkenazi Jewish carrier screening panels.


Asunto(s)
Anomalías Múltiples/genética , Judíos/genética , Adolescente , Secuencia de Bases , Niño , Preescolar , Femenino , Pruebas Genéticas , Heterocigoto , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo , Empalme del ARN/genética , Síndrome , Adulto Joven
15.
Am J Med Genet A ; 179(8): 1543-1546, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31207089

RESUMEN

1p36 deletion syndrome is a well-described condition with a recognizable phenotype, including cognitive impairment, seizures, and structural brain anomalies such as periventricular leukomalacia (PVL). In a large series of these individuals by Battaglia et al., "birth history was notable in 50% of the cases for varying degrees of perinatal distress." Given the potential for perinatal distress, seizures and PVL, we questioned if this disorder has clinical overlap with hypoxic ischemic encephalopathy (HIE). We reviewed the medical records of 69 individuals with 1p36 deletion to clarify the perinatal phenotype of this disorder and determine if there is evidence of perinatal distress and/or hypoxic injury. Our data provides evidence that these babies have signs of perinatal distress. The majority (59% term; 75% preterm) needed resuscitation and approximately 18% had cardiac arrest. Most had abnormal brain imaging (84% term; 73% preterm) with abnormal white matter findings in over half of patients. PVL or suggestion of "hypoxic insult" was present in 18% of term and 45% of preterm patients. In conclusion, individuals with 1p36 deletion have evidence of perinatal distress, white matter changes, and seizures, which can mimic HIE but are likely related to their underlying chromosome disorder.


Asunto(s)
Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Hipoxia-Isquemia Encefálica/diagnóstico , Fenotipo , Distrés Psicológico , Deleción Cromosómica , Cromosomas Humanos Par 1/genética , Diagnóstico Diferencial , Femenino , Humanos , Recién Nacido , Masculino , Embarazo
16.
Am J Med Genet A ; 179(4): 542-551, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30719864

RESUMEN

Sotos syndrome is an overgrowth syndrome characterized by distinctive facial features and intellectual disability caused by haploinsufficiency of the NSD1 gene. Genotype-phenotype correlations have been observed, with major anomalies seen more frequently in patients with 5q35 deletions than those with point mutations in NSD1. Though endocrine features have rarely been described, transient hyperinsulinemic hypoglycemia (HI) of the neonatal period has been reported as an uncommon presentation of Sotos syndrome. Eight cases of 5q35 deletions and one patient with an intragenic NSD1 mutation with transient HI have been reported. Here, we describe seven individuals with HI caused by NSD1 gene mutations with three having persistent hyperinsulinemic hypoglycemia. These patients with persistent HI and Sotos syndrome caused by NSD1 mutations, further dispel the hypothesis that HI is due to the deletion of other genes in the deleted 5q35 region. These patients emphasize that NSD1 haploinsufficiency is sufficient to cause HI, and suggest that Sotos syndrome should be considered in patients presenting with neonatal HI. Lastly, these patients help extend the phenotypic spectrum of Sotos syndrome to include HI as a significant feature.


Asunto(s)
Hiperinsulinismo Congénito/patología , Discapacidades del Desarrollo/patología , Trastornos del Crecimiento/patología , N-Metiltransferasa de Histona-Lisina/genética , Mutación , Síndrome de Sotos/patología , Adulto , Hiperinsulinismo Congénito/genética , Discapacidades del Desarrollo/genética , Femenino , Trastornos del Crecimiento/genética , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo , Pronóstico , Síndrome de Sotos/genética
17.
Epilepsy Res ; 145: 89-92, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29933145

RESUMEN

Heterozygous de novo or inherited pathogenic variants in the PCDH19 gene cause a spectrum of neurodevelopmental features including developmental delay and seizures. PCDH19 epilepsy was previously known as "epilepsy and mental retardation limited to females", since the condition almost exclusively affects females. It is hypothesized that the co-existence of two populations of neurons, some with and some without PCDH19 protein expression, results in pathologically abnormal interactions between these neurons, a mechanism also referred to as cellular interference. Consequently, PCDH19-related epilepsies are inherited in an atypical X-linked pattern, such that hemizygous, non-mosaic, 46,XY males are typically unaffected, while individuals with a disease-causing PCDH19 variant, mainly heterozygous females and mosaic males, are affected. As a corollary to this hypothesis, an individual with Klinefelter syndrome (KS) (47,XXY) who has a heterozygous disease-causing PCDH19 variant should develop PCDH19-related epilepsy. Here, we report such evidence: - a male child with KS and PCDH19-related epilepsy - supporting the PCDH19 cellular interference disease hypothesis.


Asunto(s)
Cadherinas/genética , Epilepsia/genética , Epilepsia/patología , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/patología , Preescolar , Cromosomas Humanos X/genética , Epilepsia/complicaciones , Epilepsia/rehabilitación , Humanos , Síndrome de Klinefelter/complicaciones , Síndrome de Klinefelter/rehabilitación , Masculino , Protocadherinas
19.
Am J Hum Genet ; 102(1): 69-87, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290338

RESUMEN

Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.


Asunto(s)
Codón/genética , Estudios de Asociación Genética , Mutación Missense/genética , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Adolescente , Secuencia de Aminoácidos , Niño , Estudios de Cohortes , Simulación por Computador , Demografía , Femenino , Heterocigoto , Humanos , Masculino , Neurofibromina 1/química , Fenotipo , Adulto Joven
20.
Eur J Med Genet ; 60(11): 565-571, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28807867

RESUMEN

Pitt-Hopkins syndrome is a neurodevelopmental disorder characterized by severe intellectual disability and a distinctive facial gestalt. It is caused by haploinsufficiency of the TCF4 gene. The TCF4 protein has different functional domains, with the NLS (nuclear localization signal) domain coded by exons 7-8 and the bHLH (basic Helix-Loop-Helix) domain coded by exon 18. Several alternatively spliced TCF4 variants have been described, allowing for translation of variable protein isoforms. Typical PTHS patients have impairment of at least the bHLH domain. To which extent impairment of the remaining domains contributes to the final phenotype is not clear. There is recent evidence that certain loss-of-function variants disrupting TCF4 are associated with mild ID, but not with typical PTHS. We describe a frameshift-causing partial gene deletion encompassing exons 4-6 of TCF4 in an adult patient with mild ID and nonspecific facial dysmorphisms but without the typical features of PTHS, and a c.520C > T nonsense variant within exon 8 in a child presenting with a severe phenotype largely mimicking PTHS, but lacking the typical facial dysmorphism. Investigation on mRNA, along with literature review, led us to suggest a preliminary phenotypic map of loss-of-function variants affecting TCF4. An intragenic phenotypic map of loss-of-function variants in TCF4 is suggested here for the first time: variants within exons 1-4 and exons 4-6 give rise to a recurrent phenotype with mild ID not in the spectrum of Pitt-Hopkins syndrome (biallelic preservation of both the NLS and bHLH domains); variants within exons 7-8 cause a severe phenotype resembling PTHS but in absence of the typical facial dysmorphism (impairment limited to the NLS domain); variants within exons 9-19 cause typical Pitt-Hopkins syndrome (impairment of at least the bHLH domain). Understanding the TCF4 molecular syndromology can allow for proper nosology in the current era of whole genomic investigations.


Asunto(s)
Hiperventilación/genética , Discapacidad Intelectual/genética , Mutación con Pérdida de Función , Fenotipo , Factor de Transcripción 4/genética , Empalme Alternativo , Niño , Codón sin Sentido , Facies , Femenino , Mutación del Sistema de Lectura , Humanos , Hiperventilación/diagnóstico , Discapacidad Intelectual/diagnóstico , Masculino , Persona de Mediana Edad , Dominios Proteicos , Factor de Transcripción 4/química , Factor de Transcripción 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...