Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Annu Rev Pharmacol Toxicol ; 64: 359-386, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37708433

RESUMEN

Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.


Asunto(s)
Enfermedad de Alzheimer , Antagonistas de los Receptores de Orexina , Humanos , Anciano , Anciano de 80 o más Años , Orexinas/farmacología , Antagonistas de los Receptores de Orexina/farmacología , Antagonistas de los Receptores de Orexina/uso terapéutico , Receptores de Orexina , Sueño/fisiología , Enfermedad de Alzheimer/tratamiento farmacológico
2.
Br J Pharmacol ; 181(1): 87-106, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37553894

RESUMEN

BACKGROUND AND PURPOSE: Tau pathology contributes to a bidirectional relationship between sleep disruption and neurodegenerative disease. Tau transgenic rTg4510 mice model tauopathy symptoms, including sleep/wake disturbances, which manifest as marked hyperarousal. This phenotype can be prevented by early transgene suppression; however, whether hyperarousal can be rescued after onset is unknown. EXPERIMENTAL APPROACH: Three 8-week experiments were conducted with wild-type and rTg4510 mice after age of onset of hyperarousal (4.5 months): (1) Tau transgene suppression with doxycycline (200 ppm); (2) inactive phase rapid eye movement (REM) sleep enhancement with the dual orexin receptor antagonist suvorexant (50 mg·kg-1 ·day-1 ); or (3) Active phase non-NREM (NREM) and REM sleep enhancement using the selective orexin 2 (OX2 ) receptor antagonist MK-1064 (40 mg·kg-1 ·day-1 ). Sleep was assessed using polysomnography, cognition using the Barnes maze, and tau pathology using immunoblotting and/or immunohistochemistry. KEY RESULTS: Tau transgene suppression improved tauopathy and hippocampal-dependent spatial memory, but did not modify hyperarousal. Pharmacological rescue of REM sleep deficits did not improve spatial memory or tau pathology. In contrast, normalising hyperarousal by increasing both NREM and REM sleep via OX2 receptor antagonism restored spatial memory, independently of tauopathy, but only in male rTg4510 mice. OX2 receptor antagonism induced only short-lived hypnotic responses in female rTg4510 mice and did not improve spatial memory, indicating a tau- and sex-dependent disruption of OX2 receptor signalling. CONCLUSIONS AND IMPLICATIONS: Pharmacologically reducing hyperarousal corrects tau-induced sleep/wake and cognitive deficits. Tauopathy causes sex-dependent disruptions of OX2 receptor signalling/function, which may have implications for choice of hypnotic therapeutics in tauopathies.


Asunto(s)
Enfermedades Neurodegenerativas , Receptores de Orexina , Trastornos del Sueño-Vigilia , Tauopatías , Animales , Femenino , Masculino , Ratones , Cognición , Modelos Animales de Enfermedad , Hipnóticos y Sedantes/farmacología , Ratones Transgénicos , Orexinas , Sueño/fisiología , Tauopatías/tratamiento farmacológico , Tauopatías/genética , Tauopatías/patología , Vigilia/fisiología , Receptores de Orexina/metabolismo , Antagonistas de los Receptores de Orexina/farmacología , Antagonistas de los Receptores de Orexina/uso terapéutico
3.
Behav Brain Res ; 437: 114105, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36089097

RESUMEN

Sleep is a complex biological state characterized by large populations of neurons firing in a rhythmic or synchronized manner. HCN channels play a critical role in generating and sustaining synchronized neuronal firing and are involved in the actions of anaesthetics. However, the role of these channels in sleep-wakefulness per se has yet to be studied. We conducted polysomnographic recordings of Hcn1 constitutive knockout (Hcn1 KO) and wild-type (WT) mice in order to investigate the potential role of HCN1 channels in sleep/wake regulation. EEG and EMG data were analysed using the Somnivore™ machine learning algorithm. Time spent in each vigilance state, bout number and duration, and EEG power spectral activity were compared between genotypes. There were no significant differences in the time spent in wake, rapid eye movement (REM) or non-REM (NREM) sleep between Hcn1 KO and WT mice. Wake bout duration during the inactive phase was significantly shorter in Hcn1 KO mice whilst no other bout parameters were affected by genotype. Hcn1 KO mice showed a reduction in overall EEG power which was particularly prominent in the theta (5-9 Hz) and alpha (9-15 Hz) frequency bands and most evident during NREM sleep. Together these data suggest that HCN1 channels do not play a major role in sleep architecture or modulation of vigilance states. However, loss of these channels significantly alters underlying neuronal activity within these states which may have functional consequences.


Asunto(s)
Electroencefalografía , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales de Potasio , Sueño , Vigilia , Animales , Ratones , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones Noqueados , Canales de Potasio/genética , Canales de Potasio/metabolismo , Sueño/genética , Sueño/fisiología , Sueño REM/genética , Sueño REM/fisiología , Vigilia/genética , Vigilia/fisiología
4.
Br J Pharmacol ; 179(13): 3403-3417, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35112344

RESUMEN

BACKGROUND AND PURPOSE: Transgenic mouse models of tauopathy display prominent sleep/wake disturbances which manifest primarily as a hyperarousal phenotype during the active phase, suggesting that tau pathology contributes to sleep/wake changes. However, no study has yet investigated the effect of sleep-promoting compounds in these models. Such information has implications for the use of hypnotics as potential therapeutic tools in tauopathy-related disorders. EXPERIMENTAL APPROACH: This study examined polysomnographic recordings in 6-6.5-month-old male and female rTg4510 mice following acute administration of suvorexant (50 mg·kg-1 ), MK-1064 (30 mg·kg-1 ) or zolpidem (10 mg·kg-1 ), administered at the commencement of the active phase. KEY RESULTS: Suvorexant, a dual OX receptor antagonist, promoted REM sleep in rTg4510 mice, without affecting wake or NREM sleep. MK-1064, a selective OX2 receptor antagonist, reduced wake and increased NREM and total sleep time. MK-1064 normalised the hyperarousal phenotype of male rTg4510 mice, whereas female rTg4510 mice exhibited a more transient response. Zolpidem, a GABAA receptor positive allosteric modulator, decreased wake and increased NREM sleep in both male and female rTg4510 mice. Of the three compounds, the OX2 receptor antagonist MK-1064 promoted and normalised physiologically normal sleep, especially in male rTg4510 mice. CONCLUSIONS AND IMPLICATIONS: Our findings indicate that hyperphosphorylated tau accumulation and associated hyperarousal does not significantly alter the responses of tauopathy mouse models to hypnotics. However, the sex differences observed in the sleep/wake response of rTg4510 mice to MK-1064, but not suvorexant or zolpidem, raise questions about therapeutic implications for the use of OX2 receptor antagonists in human neurodegenerative disorders.


Asunto(s)
Trastornos del Sueño-Vigilia , Tauopatías , Animales , Azepinas , Modelos Animales de Enfermedad , Femenino , Hipnóticos y Sedantes/farmacología , Masculino , Ratones , Ratones Transgénicos , Caracteres Sexuales , Sueño/fisiología , Tauopatías/tratamiento farmacológico , Triazoles , Zolpidem/farmacología
5.
J Alzheimers Dis ; 79(2): 693-708, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33361602

RESUMEN

BACKGROUND: Sleep/wake disturbances (e.g., insomnia and sleep fragmentation) are common in neurodegenerative disorders, especially Alzheimer's disease (AD) and frontotemporal dementia (FTD). These symptoms are somewhat reminiscent of narcolepsy with cataplexy, caused by the loss of orexin-producing neurons. A bidirectional relationship between sleep disturbance and disease pathology suggests a detrimental cycle that accelerates disease progression and cognitive decline. The accumulation of brain tau fibrils is a core pathology of AD and FTD-tau and clinical evidence supports that tau may impair the orexin system in AD/FTD. This hypothesis was investigated using tau mutant mice. OBJECTIVE: To characterize orexin receptor mRNA expression in sleep/wake regulatory brain centers and quantify noradrenergic locus coeruleus (LC) and orexinergic lateral hypothalamus (LH) neurons, in tau transgenic rTg4510 and tau-/- mice. METHODS: We used i n situ hybridization and immunohistochemistry (IHC) in rTg4510 and tau-/- mice. RESULTS: rTg4510 and tau-/- mice exhibited a similar decrease in orexin receptor 1 (OX1R) mRNA expression in the LC compared with wildtype controls. IHC data indicated this was not due to decreased numbers of LC tyrosine hydroxylase-positive (TH) or orexin neurons and demonstrated that tau invades TH LC and orexinergic LH neurons in rTg4510 mice. In contrast, orexin receptor 2 (OX2R) mRNA levels were unaffected in either model. CONCLUSION: The LC is strongly implicated in the regulation of sleep/wakefulness and expresses high levels of OX1R. These findings raise interesting questions regarding the effects of altered tau on the orexin system, specifically LC OX1Rs, and emphasize a potential mechanism which may help explain sleep/wake disturbances in AD and FTD.


Asunto(s)
Nivel de Alerta , Locus Coeruleus/metabolismo , Receptores de Orexina/metabolismo , Proteínas tau/metabolismo , Animales , Femenino , Área Hipotalámica Lateral/metabolismo , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , ARN Mensajero/metabolismo
6.
J Neuroinflammation ; 17(1): 136, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345316

RESUMEN

BACKGROUND: Tauopathy in the central nervous system (CNS) is a histopathological hallmark of frontotemporal dementia (FTD) and Alzheimer's disease (AD). Although AD is accompanied by various ocular changes, the effects of tauopathy on the integrity of the cornea, which is densely innervated by the peripheral nervous system and is populated by resident dendritic cells, is still unknown. The aim of this study was to investigate if neuroimmune interactions in the cornea are affected by CNS tauopathy. METHODS: Corneas from wild type (WT) and transgenic rTg4510 mice that express the P301L tau mutation were examined at 2, 6, 8, and 11 months. Clinical assessment of the anterior segment of the eye was performed using spectral domain optical coherence tomography. The density of the corneal epithelial sensory nerves and the number and field area of resident epithelial dendritic cells were assessed using immunofluorescence. The immunological activation state of corneal and splenic dendritic cells was examined using flow cytometry and compared between the two genotypes at 9 months of age. RESULTS: Compared to age-matched WT mice, rTg4510 mice had a significantly lower density of corneal nerve axons at both 8 and 11 months of age. Corneal nerves in rTg4510 mice also displayed a higher percentage of beaded nerve axons and a lower density of epithelial dendritic cells compared to WT mice. From 6 months of age, the size of the corneal dendritic cells was significantly smaller in rTg4510 compared to WT mice. Phenotypic characterization by flow cytometry demonstrated an activated state of dendritic cells (CD86+ and CD45+ CD11b+CD11c+) in the corneas of rTg4510 compared to WT mice, with no distinct changes in the spleen monocytes/dendritic cells. At 2 months of age, there were no significant differences in the neural or immune structures between the two genotypes. CONCLUSIONS: Corneal sensory nerves and epithelial dendritic cells were altered in the rTg4510 mouse model of tauopathy, with temporal changes observed with aging. The activation of corneal dendritic cells prior to the gradual loss of neighboring sensory nerves suggests an early involvement of corneal immune cells in tau-associated pathology originating in the CNS.


Asunto(s)
Córnea/patología , Células Dendríticas/inmunología , Nervio Oftálmico/patología , Tauopatías/patología , Animales , Córnea/inmunología , Córnea/inervación , Células Dendríticas/patología , Femenino , Masculino , Ratones , Ratones Transgénicos , Nervio Oftálmico/inmunología , Fenotipo , Tauopatías/inmunología
7.
Neurobiol Stress ; 9: 176-187, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30450383

RESUMEN

Depression is a highly prevalent psychiatric disorder, yet its etiology is not well understood. The validation of animal models is therefore a critical step towards advancing knowledge about the neurobiology of depression. Psychosocial stress has been promoted as a prospective animal model of depression, however, different protocols exist with variable responses, and further investigations are therefore required. We aimed to characterise the behavioural and body weight responses to the social defeat/overcrowding (SD/OC) model and to explore the effects of the antidepressant fluoxetine and the peroxynitrite scavenger, CuII(atsm), therein. Male C57BL/6JArc mice were exposed to a 19 day SD/OC protocol at two levels of aggression, determined by terminating SD bouts after one, or approximately five social defeat postures. This was followed by a battery of behavioural tests including social interaction test (SIT), locomotor activity (LMA), light-dark box test (LDB), saccharin preference test (SPT) and the forced swim test (FST). Mice were dosed daily with vehicle, fluoxetine (20 mg/kg) or CuII(atsm) (30 mg/kg) throughout the protocol. SD/OC increased body weight compared to controls, which was abolished by fluoxetine and attenuated by CuII(atsm). Weight gain specifically peaked during OC sessions but was not affected by either drug treatment. Fluoxetine reduced the number of defeat postures during fight bouts on some days. SD/OC otherwise failed to elicit depression- or anxiety-like behaviour in the tests measured. These data raise questions over the SD/OC model as an etiological model of depression-related behaviours but highlight the potential of this model for investigations into mechanisms regulating binge eating and weight gain under conditions of chronic social stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...