Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(15): e2112892119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35412853

RESUMEN

During early Drosophila embryogenesis, a network of gene regulatory interactions orchestrates terminal patterning, playing a critical role in the subsequent formation of the gut. We utilized CRISPR gene editing at endogenous loci to create live reporters of transcription and light-sheet microscopy to monitor the individual components of the posterior gut patterning network across 90 min prior to gastrulation. We developed a computational approach for fusing imaging datasets of the individual components into a common multivariable trajectory. Data fusion revealed low intrinsic dimensionality of posterior patterning and cell fate specification in wild-type embryos. The simple structure that we uncovered allowed us to construct a model of interactions within the posterior patterning regulatory network and make testable predictions about its dynamics at the protein level. The presented data fusion strategy is a step toward establishing a unified framework that would explore how stochastic spatiotemporal signals give rise to highly reproducible morphogenetic outcomes.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila , Drosophila melanogaster , Endodermo , Redes Reguladoras de Genes , Animales , Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Endodermo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica
3.
Curr Biol ; 31(16): 3639-3647.e5, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34166605

RESUMEN

Even though transcriptional repressors are studied with ever-increasing molecular resolution, the temporal aspects of gene repression remain poorly understood. Here, we address the dynamics of transcriptional repression by Capicua (Cic), which is essential for normal development and is commonly mutated in human cancers and neurodegenerative diseases.1,2 We report the speed limit for Cic-dependent gene repression based on live imaging and optogenetic perturbations in the early Drosophila embryo, where Cic was originally discovered.3 Our measurements of Cic concentration and intranuclear mobility, along with real-time monitoring of the activity of Cic target genes, reveal remarkably fast transcriptional repression within minutes of removing an optogenetic de-repressive signal. In parallel, quantitative analyses of transcriptional bursting of Cic target genes support a repression mechanism providing a fast-acting brake on burst generation. This work sets quantitative constraints on potential mechanisms for gene regulation by Cic.


Asunto(s)
Proteínas de Drosophila , Proteínas HMGB , Proteínas Represoras , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
4.
Nat Comput Sci ; 1(8): 516-520, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38217248

RESUMEN

Modern studies of embryogenesis are increasingly quantitative, powered by rapid advances in imaging, sequencing and genome manipulation technologies. Deriving mechanistic insights from the complex datasets generated by these new tools requires systematic approaches for data-driven analysis of the underlying developmental processes. Here, we use data from our work on signal-dependent gene repression in the Drosophila embryo to illustrate how computational models can compactly summarize quantitative results of live imaging, chromatin immunoprecipitation and optogenetic perturbation experiments. The presented computational approach is ideally suited for integrating rapidly accumulating quantitative data and for guiding future studies of embryogenesis.

5.
Dev Cell ; 52(6): 794-801.e4, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32142631

RESUMEN

Optogenetic perturbations, live imaging, and time-resolved ChIP-seq assays in Drosophila embryos were used to dissect the ERK-dependent control of the HMG-box repressor Capicua (Cic), which plays critical roles in development and is deregulated in human spinocerebellar ataxia and cancers. We established that Cic target genes are activated before significant downregulation of nuclear localization of Cic and demonstrated that their activation is preceded by fast dissociation of Cic from the regulatory DNA. We discovered that both Cic-DNA binding and repression are rapidly reinstated in the absence of ERK activation, revealing that inductive signaling must be sufficiently sustained to ensure robust transcriptional response. Our work provides a quantitative framework for the mechanistic analysis of dynamics and control of transcriptional repression in development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas HMGB/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Represoras/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Unión Proteica , Proteínas Represoras/genética
6.
Proc Natl Acad Sci U S A ; 116(31): 15514-15523, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31296562

RESUMEN

The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Mutación/genética , Animales , Animales Modificados Genéticamente , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Activación Enzimática , Estabilidad de Enzimas , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo
7.
Hist Philos Life Sci ; 39(4): 35, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038918

RESUMEN

How is a disease contracted, and how does it progress through the body? Answers to these questions are fundamental to understanding both basic biology and medicine. Advances in the biomedical sciences continue to provide more tools to address these fundamental questions and to uncover questions that have not been thought of before. Despite these major advances, we are still facing conceptual and technical challenges when learning about the etiology of disease, especially for genetic diseases. In this review, we illustrate this point by discussing the causal links between molecular mechanisms and systems-level phenotypes in molecular diseases. We begin with an examination of sickle cell anemia, and how mechanisms of the disease have been comprehended over the last century. While sickle cell anemia involves a mutation in a single protein in a single cell type, other diseases involve mutations in networks with many protein interactions and in diverse cell types. We introduce the challenges that result from these differences and illustrate the current obstacles by discussing the RASopathies, a recently discovered class of developmental syndromes that result from mutations in signaling networks. Methods to study mutant genotypes that lead to mutant phenotypes are discussed, particularly the use of model organisms and mutant proteins to study protein interactions that may be important for development of disease. These studies will point toward the future of diagnosing and treating genetic disease.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Mutación/genética , Transducción de Señal/genética , Anemia de Células Falciformes/genética , Genotipo , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA