Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Stroke Res ; 12(6): 1081-1092, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33939102

RESUMEN

Small vessel disease is a prevalent age-related condition linked to increased risk of dementia and stroke. We investigate the most commonly inherited form, CADASIL, caused by cysteine-involving mutations in NOTCH3. Recent studies highlight accumulation of NOTCH3 N-terminal fragmentation product (NTF) in disease. In vitro, NTF is capable of both spontaneous and catecholamine-enhanced cysteine-mediated oligomerization. Despite well-characterized genetic influence on CADASIL, environmental effects, including medication usage, on disease remain unclear. We studied effects of assorted electrophilic compounds and drugs on NTF oligomerization by SDS-PAGE and dynamic light scattering. We then examined direct proton pump inhibitor-NTF binding with antibodies designed against proton pump inhibitor-labeled proteins and mass spectrometry. Finally, we used monoclonal NTF antibodies with Proximity Ligation Assay to identify NTF oligomers in 3 CADASIL and 2 age-matched control brains. We identified enhancement of NTF oligomerization by two electrophilic cysteine-modifying compounds, N-ethylmaleimide and iodoacetamide, and an electrophilic compound capable of oxidizing cysteines, ferric chloride. Electrophilic clinical drugs (fenoldopam, omeprazole, tenatoprazole, lansoprazole, and rabeprazole) also promoted oligomerization, and we identified direct omeprazole-NTF and tenatoprazole-NTF complexes. Additionally, we provide novel evidence of NTF multimers in human CADASIL brains. A broad array of electrophilic chemicals, including clinically relevant drugs, influences oligomerization of a pathological CADASIL protein, providing mechanistic insight into disease protein oligomerization. We posit that environmental influences, which may include usage of electrophilic drugs, may affect CADASIL presentations.


Asunto(s)
CADASIL , Preparaciones Farmacéuticas , Encéfalo/metabolismo , Cisteína , Humanos , Mutación , Receptor Notch3/genética , Receptores Notch/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...