Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 16(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38686438

RESUMEN

The genetic architecture of mating-type loci in lichen-forming fungi has been characterized in very few taxa. Despite the limited data, and in contrast to all other major fungal lineages, arrangements that have both mating-type alleles in a single haploid genome have been hypothesized to be absent from the largest lineage of lichen-forming fungi, the Lecanoromycetes. We report the discovery of both mating-type alleles from the haploid genomes of three species within this group. Our results demonstrate that Lecanoromycetes are not an outlier among Ascomycetes.


Asunto(s)
Ascomicetos , Genes del Tipo Sexual de los Hongos , Genoma Fúngico , Líquenes , Ascomicetos/genética , Ascomicetos/clasificación , Líquenes/genética , Líquenes/microbiología , Filogenia , Haploidia , Alelos
2.
Mol Ecol ; 33(2): e17218, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38038696

RESUMEN

Host-microbe interactions are increasingly recognized as important drivers of organismal health, growth, longevity and community-scale ecological processes. However, less is known about how genetic variation affects hosts' associated microbiomes and downstream phenotypes. We demonstrate that sunflower (Helianthus annuus) harbours substantial, heritable variation in microbial communities under field conditions. We show that microbial communities co-vary with heritable variation in resistance to root infection caused by the necrotrophic pathogen Sclerotinia sclerotiorum and that plants grown in autoclaved soil showed almost complete elimination of pathogen resistance. Association mapping suggests at least 59 genetic locations with effects on both microbial relative abundance and Sclerotinia resistance. Although the genetic architecture appears quantitative, we have elucidated previously unexplained genetic variation for resistance to this pathogen. We identify new targets for plant breeding and demonstrate the potential for heritable microbial associations to play important roles in defence in natural and human-altered environments.


Asunto(s)
Fitomejoramiento , Rizosfera , Humanos , Fenotipo , Plantas , Microbiología del Suelo , Raíces de Plantas/genética , Raíces de Plantas/microbiología
3.
Mycologia ; 115(2): 187-205, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36736327

RESUMEN

Variation in mitochondrial genome composition across intraspecific, interspecific, and higher taxonomic scales has been little studied in lichen obligate symbioses. Cladonia is one of the most diverse and ecologically important lichen genera, with over 500 species representing an array of unique morphologies and chemical profiles. Here, we assess mitochondrial genome diversity and variation in this flagship genus, with focused sampling of two clades of the "true" reindeer lichens, Cladonia subgenus Cladina, and additional genomes from nine outgroup taxa. We describe composition and architecture at the gene and the genome scale, examining patterns in organellar genome size in larger taxonomic groups in Ascomycota. Mitochondrial genomes of Cladonia, Pilophorus, and Stereocaulon were consistently larger than those of Lepraria and contained more introns, suggesting a selective pressure in asexual morphology in Lepraria driving it toward genomic simplification. Collectively, lichen mitochondrial genomes were larger than most other fungal life strategies, reaffirming the notion that coevolutionary streamlining does not correlate to genome size reductions. Genomes from Cladonia ravenelii and Stereocaulon pileatum exhibited ATP9 duplication, bearing paralogs that may still be functional. Homing endonuclease genes (HEGs), though scarce in Lepraria, were diverse and abundant in Cladonia, exhibiting variable evolutionary histories that were sometimes independent of the mitochondrial evolutionary history. Intraspecific HEG diversity was also high, with C. rangiferina especially bearing a range of HEGs with one unique to the species. This study reveals a rich history of events that have transformed mitochondrial genomes of Cladonia and related genera, allowing future study alongside a wealth of assembled genomes.


Asunto(s)
Genoma Mitocondrial , Líquenes , Líquenes/genética , Líquenes/microbiología , Sintenía , Evolución Biológica , Filogenia
4.
Front Plant Sci ; 12: 668315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594346

RESUMEN

The National Institute on Drug Abuse (NIDA) is the sole producer of Cannabis for research purposes in the United States, including medical investigation. Previous research established that cannabinoid profiles in the NIDA varieties lacked diversity and potency relative to the Cannabis produced commercially. Additionally, microsatellite marker analyses have established that the NIDA varieties are genetically divergent form varieties produced in the private legal market. Here, we analyzed the genomes of multiple Cannabis varieties from diverse lineages including two produced by NIDA, and we provide further support that NIDA's varieties differ from widely available medical, recreational, or industrial Cannabis. Furthermore, our results suggest that NIDA's varieties lack diversity in the single-copy portion of the genome, the maternally inherited genomes, the cannabinoid genes, and in the repetitive content of the genome. Therefore, results based on NIDA's varieties are not generalizable regarding the effects of Cannabis after consumption. For medical research to be relevant, material that is more widely used would have to be studied. Clearly, having research to date dominated by a single, non-representative source of Cannabis has hindered scientific investigation.

6.
Am J Bot ; 106(8): 1090-1095, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31397894

RESUMEN

PREMISE: Lichens are fungi that enter into obligate symbioses with photosynthesizing organisms (algae, cyanobacteria). Traditional narratives of lichens as binary symbiont pairs have given way to their recognition as dynamic metacommunities. Basidiomycete yeasts, particularly of the genus Cyphobasidium, have been inferred to be widespread and important components of lichen metacommunities. Yet, the presence of basidiomycete yeasts across a wide diversity of lichen lineages has not previously been tested. METHODS: We searched for lichen-associated cystobasidiomycete yeasts in newly generated metagenomic data from 413 samples of 339 lichen species spanning 57 families and 25 orders. The data set was generated as part of a large-scale project to study lichen biodiversity gradients in the southern Appalachian Mountains Biodiversity Hotspot of southeastern North America. RESULTS: Our efforts detected cystobasidiomycete yeasts in nine taxa (Bryoria nadvornikiana, Heterodermia leucomelos, Lecidea roseotincta, Opegrapha vulgata, Parmotrema hypotropum, P. subsumptum, Usnea cornuta, U. strigosa, and U. subgracilis), representing 2.7% of all species sampled. Seven of these taxa (78%) are foliose (leaf-like) or fruticose (shrubby) lichens that belong to families where basidiomycete yeasts have been previously detected. In several of the nine cases, cystobasidiomycete rDNA coverage was comparable to, or greater than, that of the primary lichen fungus single-copy nuclear genomic rDNA, suggesting sampling artifacts are unlikely to account for our results. CONCLUSIONS: Studies from diverse areas of the natural sciences have led to the need to reconceptualize lichens as dynamic metacommunities. However, our failure to detect cystobasidiomycetes in 97.3% (330 species) of the sampled species suggests that basidiomycete yeasts are not ubiquitous in lichens.


Asunto(s)
Ascomicetos , Líquenes , Región de los Apalaches , Filogenia , Encuestas y Cuestionarios
7.
PLoS One ; 14(7): e0217824, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31269054

RESUMEN

Diatoms are the most diverse lineage of algae, but the diversity of their chloroplast genomes, particularly within a genus, has not been well documented. Herein, we present three chloroplast genomes from the genus Halamphora (H. americana, H. calidilacuna, and H. coffeaeformis), the first pennate diatom genus to be represented by more than one species. Halamphora chloroplast genomes ranged in size from ~120 to 150 kb, representing a 24% size difference within the genus. Differences in genome size were due to changes in the length of the inverted repeat region, length of intergenic regions, and the variable presence of ORFs that appear to encode as-yet-undescribed proteins. All three species shared a set of 161 core features but differed in the presence of two genes, serC and tyrC of foreign and unknown origin, respectively. A comparison of these data to three previously published chloroplast genomes in the non-pennate genus Cyclotella (Thalassiosirales) revealed that Halamphora has undergone extensive chloroplast genome rearrangement compared to other genera, as well as containing variation within the genus. Finally, a comparison of Halamphora chloroplast genomes to those of land plants indicates diatom chloroplast genomes within this genus may be evolving at least ~4-7 times faster than those of land plants. Studies such as these provide deeper insights into diatom chloroplast evolution and important genetic resources for future analyses.


Asunto(s)
ADN Intergénico , Diatomeas/genética , Evolución Molecular , Reordenamiento Génico , Genoma del Cloroplasto , Sistemas de Lectura Abierta , Plantas/genética
8.
Ecol Evol ; 9(7): 4245-4263, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31016002

RESUMEN

Reductions in genome size and complexity are a hallmark of obligate symbioses. The mitochondrial genome displays clear examples of these reductions, with the ancestral alpha-proteobacterial genome size and gene number having been reduced by orders of magnitude in most descendent modern mitochondrial genomes. Here, we examine patterns of mitochondrial evolution specifically looking at intron size, number, and position across 58 species from 21 genera of lichenized Ascomycete fungi, representing a broad range of fungal diversity and niches. Our results show that the cox1gene always contained the highest number of introns out of all the mitochondrial protein-coding genes, that high intron sequence similarity (>90%) can be maintained between different genera, and that lichens have undergone at least two instances of complete, genome-wide intron loss consistent with evidence for genome streamlining via loss of parasitic, noncoding DNA, in Phlyctis boliviensisand Graphis lineola. Notably, however, lichenized fungi have not only undergone intron loss but in some instances have expanded considerably in size due to intron proliferation (e.g., Alectoria fallacina and Parmotrema neotropicum), even between closely related sister species (e.g., Cladonia). These results shed light on the highly dynamic mitochondrial evolution that is occurring in lichens and suggest that these obligate symbiotic organisms are in some cases undergoing recent, broad-scale genome streamlining via loss of protein-coding genes as well as noncoding, parasitic DNA elements.

9.
Artículo en Inglés | MEDLINE | ID: mdl-29527965

RESUMEN

Diatoms are the most diverse lineage of algae and at the base of most aquatic food webs, but only 11 of their mitochondrial genomes have been described. Herein, we present the mitochondrial genomes of six diatom species, including: Melosira undulata, Nitzschia alba, Surirella sp., Entomoneis sp., Halamphora coffeaeformis, and Halamphora calidilacuna. Comparison of these six genomes to the 11 currently published diatom mitochondrial genomes revealed a novel ubiquitous feature block consisting of tatC-orf157-rps11. The presence of intronic retrotransposable elements in the barcoding region of cox1 in the Halamphora genomes may explain historic difficulty (especially PCR) with cox1 as a universal barcode for diatoms. Our analysis suggests that high rates of variability in number and position of introns, in many commonly used coding sequences, prevent these from being universally viable as barcodes for diatoms. Therefore, we suggest researchers examine the chloroplast and/or nuclear genomes for universal barcoding markers.


Asunto(s)
Diatomeas/genética , Complejo IV de Transporte de Electrones/genética , Genoma Mitocondrial , Intrones , Polimorfismo Genético , Diatomeas/clasificación , Evolución Molecular , Filogenia , Retroelementos , Alineación de Secuencia
10.
AoB Plants ; 11(6): plz074, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32010439

RESUMEN

Gene copy number (CN) variation is known to be important in nearly every species where it has been examined. Alterations in gene CN may provide a fast way of acquiring diversity, allowing rapid adaptation under strong selective pressures, and may also be a key component of standing genetic variation within species. Cannabis sativa plants produce a distinguishing set of secondary metabolites, the cannabinoids, many of which have medicinal utility. Two major cannabinoids-THCA (delta-9-tetrahydrocannabinolic acid) and CBDA (cannabidiolic acid)-are products of a three-step biochemical pathway. Using whole-genome shotgun sequence data for 69 Cannabis cultivars from diverse lineages within the species, we found that genes encoding the synthases in this pathway vary in CN. Transcriptome sequence data show that the cannabinoid paralogs are differentially expressed among lineages within the species. We also found that CN partially explains variation in cannabinoid content levels among Cannabis plants. Our results demonstrate that biosynthetic genes found at multiple points in the pathway could be useful for breeding purposes, and suggest that natural and artificial selection have shaped CN variation. Truncations in specific paralogs are associated with lack of production of particular cannabinoids, showing how phytochemical diversity can evolve through a complex combination of processes.

11.
Mol Ecol ; 27(5): 1155-1169, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29417658

RESUMEN

Symbioses among co-evolving taxa are often marked by genome reductions such as a loss of protein-coding genes in at least one of the partners as a means of reducing redundancy or intergenomic conflict. To explore this phenomenon in an iconic yet under-studied group of obligate symbiotic organisms, mitochondrial genomes of 22 newly sequenced and annotated species of lichenized fungi were compared to 167 mitochondrial genomes of nonlichenized fungi. Our results demonstrate the first broad-scale loss of atp9 from mitochondria of lichenized fungi. Despite key functions in mitochondrial energy production, we show that atp9 has been independently lost in three different lineages spanning 10 of the 22 studied species. A search for predicted, functional copies of atp9 among genomes of other symbionts involved in each lichen revealed the full-length, presumably functional copies of atp9 in either the photosynthetic algal partner or in other symbiotic fungi in all 10 instances. Together, these data yield evidence of an obligate symbiotic relationship in which core genomic processes have been streamlined, likely due to co-evolution.


Asunto(s)
Genoma Fúngico , Genoma Mitocondrial , Líquenes/genética , Simbiosis/genética , Evolución Biológica , Evolución Molecular , Proteínas Fúngicas/genética , Hongos/genética , Genes Fúngicos , Genómica , Filogenia , Polimorfismo Genético , Análisis de Secuencia de ADN , Sintenía
12.
Mitochondrial DNA B Resour ; 3(1): 305-308, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33474154

RESUMEN

Known colloquially as 'Old Man's Beard', Usnea is a genus of lichenized Ascomycete fungi characterized by having a fruticose growth form and cartilaginous central axis. The complete mitochondrial genomes of Usnea halei, U. mutabilis, U. subfusca, U. subgracilis, and U. subscabrosa were sequenced using Illumina data and then assembled de novo. These mitogenomes ranged in size from 52,486 bp (U. subfusca) to 94,464 bp (U. subgracilis). All were characterized by having high levels of intronic and intergenic variation, such as ORFs that encode proteins with homology to two homing endonuclease types, LAGLIDADG and GIY-YIG. Genes annotated within these mitogenomes include 14 protein-coding genes, the large and small ribosomal subunits (LSU and SSU), and 23-26 tRNAs. Notably, the atp9 gene was absent from each genome. Genomic synteny was highly conserved across the five species. Five conserved mitochondrial genes (nad2, nad4, cox1, cox2, and cox3) were used to infer a best estimate maximum likelihood phylogeny among these five Usnea and other relatives, which yielded relationships consistent with prior published phylogenies.

13.
Mitochondrial DNA B Resour ; 3(2): 508-512, 2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33490518

RESUMEN

Cladonia is among the most species-rich genera of lichens globally. Species in this lineage, commonly referred to as reindeer lichens, are ecologically important in numerous regions worldwide. In some locations, species of Cladonia can comprise the dominant groundcover, and are a major food source for caribou and other mammals. Additionally, many species are known to produce substances with antimicrobial properties or other characteristics with potentially important medical applications. This exceptional morphological and ecological variation contrasts sharply with the limited molecular divergence often observed among species. As a new resource to facilitate ongoing and future studies of these important species, we analyse here the sequences of 11 Cladonia mitochondrial genomes, including new mitochondrial genome assemblies and annotations representing nine species: C. apodocarpa, C. caroliniana, C. furcata, C. leporina, C. petrophila, C. peziziformis, C. robbinsii, C. stipitata, and C. subtenuis. These 11 genomes varied in size, intron content, and complement of tRNAs. Genes annotated within these mitochondrial genomes include 15 protein-coding genes, the large and small ribosomal subunits (mtLSU and mtSSU), and 23-26 tRNAs. All Cladonia mitochondrial genomes contained atp9, an important energy transport gene that has been lost evolutionarily in some lichen mycobiont mitochondria. Using a concatenated alignment of five mitochondrial genes (nad2, nad4, cox1, cox2, and cox3), a Bayesian phylogeny of relationships among species was inferred and was consistent with previously published phylogenetic relationships, highlighting the utility of these regions in reconstructing phylogenetic history.

14.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3793-4, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26329384

RESUMEN

Cannabis and Humulus are sister genera comprising the entirety of the Cannabaceae sensu stricto, including C. sativa L. (marijuana, hemp), and H. lupulus L. (hops) as two economically important crops. These two plants have been used by humans for many purposes including as a fiber, food, medicine, or inebriant in the case of C. sativa, and as a flavoring component in beer brewing in the case of H. lupulus. In this study, we report the complete chloroplast genomes for two distinct hemp varieties of C. sativa, Italian "Carmagnola" and Russian "Dagestani", and one Czech variety of H. lupulus "Saazer". Both C. sativa genomes are 153 871 bp in length, while the H. lupulus genome is 153 751 bp. The genomes from the two C. sativa varieties differ in 16 single nucleotide polymorphisms (SNPs), while the H. lupulus genome differs in 1722 SNPs from both C. sativa cultivars.


Asunto(s)
Cannabis/genética , ADN de Cloroplastos/genética , Genoma del Cloroplasto , Humulus/genética , Composición de Base , Secuencias Invertidas Repetidas , Anotación de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
15.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2349-50, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26061336

RESUMEN

In this article we report the complete mitochondrial genome of the Warm Springs pupfish, Cyprinodon nevadensis pectoralis. The genomic DNA of a single female individual was extracted and sequenced on the Illumina HiSeq2000 platform. It contains 16,499 bp and a total of 37 genes, divided into 22 tRNA genes, 2 rRNA genes and 13 protein-coding genes. It exhibits 94% sequence similarity with the other published mitochondrion in its genus, C. rubrofluviatilis. A Tamura-Nei maximum-likelihood tree constructed from mitochondrial sequences shows expected phylogenetic relationships between C. nevadensis and sister taxa.


Asunto(s)
Genoma Mitocondrial , Peces Killi/clasificación , Peces Killi/genética , Animales , Evolución Molecular , Genes Mitocondriales , Manantiales de Aguas Termales , Sistemas de Lectura Abierta , Filogenia , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
16.
Mitochondrial DNA B Resour ; 1(1): 715-716, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-33644379

RESUMEN

The following report details the first annotated mitochondrial genome for the Carmagnola variety of Cannabis sativa, the first reference genome for the Cannabaceae family. The total length is 415,499 bp and contains 54 genes, which sub-divide into 38 protein-coding genes, 15 tRNA genes, and 3 rRNA genes.

17.
Appl Environ Microbiol ; 80(16): 4920-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24907317

RESUMEN

Carrion decomposition is an ecologically important natural phenomenon influenced by a complex set of factors, including temperature, moisture, and the activity of microorganisms, invertebrates, and scavengers. The role of soil microbes as decomposers in this process is essential but not well understood and represents a knowledge gap in carrion ecology. To better define the role and sources of microbes in carrion decomposition, lab-reared mice were decomposed on either (i) soil with an intact microbial community or (ii) soil that was sterilized. We characterized the microbial community (16S rRNA gene for bacteria and archaea, and the 18S rRNA gene for fungi and microbial eukaryotes) for three body sites along with the underlying soil (i.e., gravesoils) at time intervals coinciding with visible changes in carrion morphology. Our results indicate that mice placed on soil with intact microbial communities reach advanced stages of decomposition 2 to 3 times faster than those placed on sterile soil. Microbial communities associated with skin and gravesoils of carrion in stages of active and advanced decay were significantly different between soil types (sterile versus untreated), suggesting that substrates on which carrion decompose may partially determine the microbial decomposer community. However, the source of the decomposer community (soil- versus carcass-associated microbes) was not clear in our data set, suggesting that greater sequencing depth needs to be employed to identify the origin of the decomposer communities in carrion decomposition. Overall, our data show that soil microbial communities have a significant impact on the rate at which carrion decomposes and have important implications for understanding carrion ecology.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Hongos/metabolismo , Microbiología del Suelo , Vertebrados/microbiología , Animales , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Biodiversidad , Hongos/genética , Hongos/aislamiento & purificación , Ratones/metabolismo , Ratones/microbiología , Vertebrados/metabolismo
18.
Mol Ecol ; 23(9): 2144-5, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24766631

RESUMEN

Arguably the most useful model of evolution emerged from the mind of Sewall Wright when he invented the fitness landscape (Wright 1932). In a recent issue of Molecular Ecology, Martin & Feinstein (2014) investigate the genetics and demographic history of an adaptive radiation of pupfish on San Salvador Island. Since the founder species colonized the island 10,000 years ago, two descendent species have appeared and in several lakes all three species (a durophage, a scale-eater, and the generalist ancestral form) coexist. The three species are thought to occupy three distinct fitness peaks. The durophage and generalists' peaks are close, whereas the scale-eater's peak is predicted to be distant and separated from the other two by a deep valley. Consistent with this view, gene flow between the two species on close fitness peaks is greater than the gene flow between these two species and the third species on a more distant peak. Correspondingly, the inferred fitness landscape predicts progress towards speciation, with more limited separation of species on close peaks, and that speciation is more complete for the scale-eater. The article provides an illustrative example of the power afforded by analysis of large numbers of SNPs for estimating key parameters underlying evolutionary divergence.


Asunto(s)
Adaptación Fisiológica/genética , Ecosistema , Especiación Genética , Peces Killi/clasificación , Animales
19.
Elife ; 2: e01104, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24137541

RESUMEN

Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI:http://dx.doi.org/10.7554/eLife.01104.001.


Asunto(s)
Microbiota , Modelos Animales , Cambios Post Mortem , Animales , Ciencias Forenses , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...