Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genesis ; 62(1): e23580, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37974491

RESUMEN

Bop1 can promote cell proliferation and is a component of the Pes1-Bop1-WDR12 (PeBoW) complex that regulates ribosomal RNA processing and biogenesis. In embryos, however, bop1 mRNA is highly enriched in the neural plate, cranial neural crest and placodes, and potentially may interact with Six1, which also is expressed in these tissues. Recent work demonstrated that during development, Bop1 is required for establishing the size of the tadpole brain, retina and cranial cartilages, as well as controlling neural tissue gene expression levels. Herein, we extend this work by assessing the effects of Bop1 knockdown at neural plate and larval stages. Loss of Bop1 expanded neural plate gene expression domains (sox2, sox11, irx1) and reduced neural crest (foxd3, sox9), placode (six1, sox11, irx1, sox9) and epidermal (dlx5) expression domains. At larval stages, Bop1 knockdown reduced the expression of several otic vesicle genes (six1, pax2, irx1, sox9, dlx5, otx2, tbx1) and branchial arch genes that are required for chondrogenesis (sox9, tbx1, dlx5). The latter was not the result of impaired neural crest migration. Together these observations indicate that Bop1 is a multifunctional protein that in addition to its well-known role in ribosomal biogenesis functions during early development to establish the craniofacial precursor domains.


Asunto(s)
Cresta Neural , Factores de Transcripción , Cresta Neural/metabolismo , Factores de Transcripción/metabolismo , Cabeza , Cráneo/metabolismo , Ribosomas/metabolismo , Regulación del Desarrollo de la Expresión Génica
2.
Dev Biol ; 489: 62-75, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35697116

RESUMEN

Mcrs1 is a multifunctional protein that is critical for many cellular processes in a wide range of cell types. Previously, we showed that Mcrs1 binds to the Six1 transcription factor and reduces the ability of the Six1-Eya1 complex to upregulate transcription, and that Mcrs1 loss-of-function leads to the expansion of several neural plate genes, reduction of neural border and pre-placodal ectoderm (PPR) genes, and pleiotropic effects on various neural crest (NC) genes. Because the affected embryonic structures give rise to several of the cranial tissues affected in Branchio-otic/Branchio-oto-renal (BOR) syndrome, herein we tested whether these gene expression changes subsequently alter the development of the proximate precursors of BOR affected structures - the otic vesicles (OV) and branchial arches (BA). We found that Mcrs1 is required for the expression of several OV genes involved in inner ear formation, patterning and otic capsule cartilage formation. Mcrs1 knockdown also reduced the expression domains of many genes expressed in the larval BA, derived from either NC or PPR, except for emx2, which was expanded. Reduced Mcrs1 also diminished the length of the expression domain of tbx1 in BA1 and BA2 and interfered with cranial NC migration from the dorsal neural tube; this subsequently resulted in defects in the morphology of lower jaw cartilages derived from BA1 and BA2, including the infrarostral, Meckel's, and ceratohyal as well as the otic capsule. These results demonstrate that Mcrs1 plays an important role in processes that lead to the formation of craniofacial cartilages and its loss results in phenotypes consistent with reduced Six1 activity associated with BOR.


Asunto(s)
Región Branquial , Síndrome Branquio Oto Renal , Región Branquial/metabolismo , Síndrome Branquio Oto Renal/genética , Síndrome Branquio Oto Renal/metabolismo , Cartílago/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Cresta Neural , Placa Neural/metabolismo , Proteínas de Unión al ARN/metabolismo
3.
Evol Dev ; 24(1-2): 61-76, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35334153

RESUMEN

Changing the shape of craniofacial bones can profoundly alter ecological function, and understanding how developmental conditions sculpt skeletal phenotypes can provide insight into evolutionary adaptations. Thyroid hormone (TH) stimulates metamorphosis and regulates skeletal morphogenesis across vertebrates. To assess the roles of this hormone in sculpting the craniofacial skeleton of a non-metamorphic vertebrate, we tested zebrafish for developmental periods of TH-induced craniofacial shape change. We analyzed shapes of specific bones that function in prey detection, capture and processing. We quantified these elements from late-larval through adult stages under three developmental TH profiles. Under wild-type conditions, each bone progressively grows allometrically into a mature morphology over the course of postembryonic development. In three of the four bones, TH was required to sculpt an adult shape: hypothyroidism inhibited aspects of shape change, and allowed some components of immature shape to be retained into adulthood. Excess developmental TH stimulated aspects of precocious shape change leading to abnormal morphologies in some bones. Skeletal features with functional importance showed high sensitivities to TH, including the transformator process of the tripus, the mandibular symphysis of the lower jaw, the scutiform lamina of the hyomandibula, and the anterior arm of the pharyngeal jaw. In all, we found that TH is necessary for shaping mature morphology of several essential skeletal elements; this requirement is particularly pronounced during larval development. Altered TH titer leads to abnormal morphologies with likely functional consequences, highlighting the potential of TH and downstream pathways as targets for evolutionary change.


Asunto(s)
Hormonas Tiroideas , Pez Cebra , Animales , Huesos , Maxilares/fisiología , Larva/metabolismo , Hormonas Tiroideas/metabolismo
4.
Dev Biol ; 467(1-2): 39-50, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891623

RESUMEN

The Six1 transcription factor plays a major role in craniofacial development. Mutations in SIX1 and its co-factor, EYA1, are causative for about 50% of Branchio-otic/Branchio-oto-renal syndrome (BOR) patients, who are characterized by variable craniofacial, otic and renal malformations. We previously screened for other proteins that might interact with Six1 to identify additional genes that may play a role in BOR, and herein characterize the developmental role of one of them, Microspherule protein 1 (Mcrs1). We found that in cultured cells, Mcrs1 bound to Six1 and in both cultured cells and embryonic ectoderm reduced Six1-Eya1 transcriptional activation. Knock-down of Mcrs1 in embryos caused an expansion of the domains of neural plate genes and two genes expressed in both the neural plate and neural crest (zic1, zic2). In contrast, two other genes expressed in pre-migratory neural crest (foxd3, sox9) were primarily reduced. Cranial placode genes showed a mixture of expanded and diminished expression domains. At larval stages, loss of Mcrs1 resulted in a significant reduction of otic vesicle gene expression concomitant with a smaller otic vesicle volume. Experimentally increasing Mcrs1 above endogenous levels favored the expansion of neural border and neural crest gene domains over cranial placode genes; it also reduced otic vesicle gene expression but not otic vesicle volume. Co-expression of Mcrs1 and Six1 as well as double knock-down and rescue experiments establish a functional interaction between Mcrs1 and Six1 in the embryo, and demonstrate that this interaction has an important role in the development of craniofacial tissues including the otic vesicle.


Asunto(s)
Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Unión al ARN/biosíntesis , Cráneo/embriología , Proteínas de Xenopus/biosíntesis , Animales , Ectodermo/embriología , Cresta Neural/embriología , Xenopus laevis
5.
Anat Rec (Hoboken) ; 302(10): 1754-1769, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30989809

RESUMEN

Thyroid hormone (TH) directs the growth and maintenance of tissues throughout the body during development and into adulthood, and plays a particularly important role in proper ossification and homeostasis of the skeleton. To better understand the roles of TH in the skeletogenesis of a vertebrate model, and to define areas of the skeleton that are particularly sensitive to developmental TH, we examined the effects of hypo- and hyperthyroidism on skeletal development in zebrafish. Performing a bone-by-bone anatomical assessment on the entire skeleton of adult fish, we found that TH is required for proper ossification, growth, morphogenesis, and fusion of numerous bones. We showed that the pectoral girdle, dermatocranium, Weberian apparatus, and dentary are particularly sensitive to TH, and that TH affects development of skeletal element regardless of bone type and developmental origin. Indeed, the hormone does not universally promote ossification: we found that developmental TH prevents ectopic ossification in multiple thin bones and within connective tissue of the jaw. In all, we found that TH regulates proper morphogenesis and ossification in the majority of zebrafish bones, and that the requirement for the hormone extends across bone types and developmental profiles. Anat Rec, 302:1754-1769, 2019. © 2019 American Association for Anatomy.


Asunto(s)
Osteogénesis/fisiología , Esqueleto/crecimiento & desarrollo , Hormonas Tiroideas/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Modelos Animales , Hormonas Tiroideas/genética
6.
J Comp Psychol ; 116(1): 83-92, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11926687

RESUMEN

Earlier findings, based on limited behavioral observations, indicate that nursing behavior in rats declines dramatically in duration over time postpartum-despite increasing ingestion of milk by rat pups to meet their growth and metabolic needs-although hungry pups elicit more nursing than do well-nourished pups. The authors compared the nursing pattern in detail for 6 hr on Days 7 and 14 and induced hunger in pups acutely with mammary-duct-ligated dams unable to provide milk. Compared with Day 7, on Day 14, supine nursing and the interval between nursing bouts increased, whereas hovering over pups and kyphotic nursing decreased. When pups were increasingly hungry, these age-related changes were counteracted. Thus, the ingestive motivation of pups largely regulates the nursing pattem over time.


Asunto(s)
Animales Lactantes/fisiología , Hambre , Lactancia , Conducta Materna , Ratas Long-Evans/fisiología , Análisis de Varianza , Animales , Femenino , Masculino , Periodo Posparto , Postura , Ratas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...