Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38543280

RESUMEN

Toxicological studies are a part of the drug development process and the preclinical stages, for which suitable vehicles ensuring easy and safe administration are crucial. However, poor aqueous solubility of drugs complicates vehicle screening for oral administration since non-aqueous solvents are often not tolerable. In the case of the anti-infective corallopyronin A, currently undergoing preclinical investigation for filarial nematode and bacterial infections, commonly used vehicles such as polyethylene glycol 200, aqueous solutions combined with cosolvents or solubilizers, or aqueous suspension have failed due to insufficient tolerability, solubility, or the generation of a non-homogeneous suspension. To this end, the aim of the study was to establish an alternative approach which offers suitable tolerability, dissolution, and ease of handling. Thus, a corallopyronin A-mesoporous silica formulation was successfully processed and tested in a seven-day toxicology study focused on Beagle dogs, including a toxicokinetic investigation on day one. Sufficient tolerability was confirmed by the vehicle control group. The vehicle enabled high-dose levels resulting in a low-, middle-, and high-dose of 150, 450, and 750 mg/kg. Overall, it was possible to achieve high plasma concentrations and exposures, leading to a valuable outcome of the toxicology study and establishing mesoporous silica as a valuable contender for challenging drug candidates.

2.
J Chem Ecol ; 49(9-10): 549-569, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37453001

RESUMEN

The cyclic depsipeptide FR900359 (FR) is derived from the soil bacterium Chromobacterium vaccinii and known to bind Gq proteins of mammals and insects, thereby abolishing the signal transduction of their Gq protein-coupled receptors, a process that leads to severe physiological consequences. Due to their highly conserved structure, Gq family of proteins are a superior ecological target for FR producing organisms, resulting in a defense towards a broad range of harmful organisms. Here, we focus on the question whether bacteria like C. vaccinii are important factors in soil in that their secondary metabolites impair, e.g., plant harming organisms like nematodes. We prove that the Gq inhibitor FR is produced under soil-like conditions. Furthermore, FR inhibits heterologously expressed Gαq proteins of the nematodes Caenorhabditis elegans and Heterodera schachtii in the micromolar range. Additionally, in vivo experiments with C. elegans and the plant parasitic cyst nematode H. schachtii demonstrated that FR reduces locomotion of C. elegans and H. schachtii. Finally, egg-laying of C. elegans and hatching of juvenile stage 2 of H. schachtii from its cysts is inhibited by FR, suggesting that FR might reduce nematode dispersion and proliferation. This study supports the idea that C. vaccinii and its excreted metabolome in the soil might contribute to an ecological equilibrium, maintaining and establishing the successful growth of plants.


Asunto(s)
Depsipéptidos , Nematodos , Animales , Suelo , Caenorhabditis elegans , Depsipéptidos/farmacología , Bacterias , Transducción de Señal , Mamíferos
3.
Food Chem ; 425: 136473, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295212

RESUMEN

In view of the poor acceptance of synthetic food colorants by consumers, there is intense interest in novel natural compounds, preferably from plant-derived sources. We oxidized chlorogenic acid using NaIO4 and reacted the resultant quinone with tryptophan (Trp) to obtain a red-colored product. The colorant was precipitated, freeze-dried, purified by size exclusion chromatography, and subsequently characterized using UHPLC-MS, high-resolution mass spectrometry, and NMR spectroscopy. Additional mass spectrometric studies were performed on the reaction product generated with Trp educts labeled with 15N and 13C. The data obtained from these studies allowed the identification of a complex compound consisting of two Trp and one caffeic acid moieties, and the proposition of a tentative pathway of its formation. Thus, the present investigation expands our knowledge about the formation of red colorants based on the reaction of plant phenols and amino acids.


Asunto(s)
Ácido Clorogénico , Triptófano , Triptófano/química , Acoplamiento Oxidativo , Ácido Clorogénico/análisis , Espectrometría de Masas , Aminoácidos , Cromatografía Líquida de Alta Presión
4.
iScience ; 26(4): 106492, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37091255

RESUMEN

The macrocyclic depsipeptides YM-254890 (YM) and FR900359 (FR) are potent inhibitors of Gαq/11 proteins. They are important pharmacological tools and have potential as therapeutic drugs. The hydrogenated, tritium-labeled YM and FR derivatives display largely different residence times despite similar structures. In the present study we established a competition-association binding assay to determine the dissociation kinetics of unlabeled Gq protein inhibitors. Structure-affinity and structure-residence time relationships were analyzed. Small structural modifications had a large impact on residence time. YM and FR exhibited 4- to 10-fold higher residence times than their hydrogenated derivatives. While FR showed pseudo-irreversible binding, YM displayed much faster dissociation from its target. The isopropyl anchor present in FR and some derivatives was essential for slow dissociation. These data provide a basis for future drug design toward modulating residence times of macrocyclic Gq protein inhibitors, which has been recognized as a crucial determinant for therapeutic outcome.

5.
Pharmaceutics ; 14(8)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36015283

RESUMEN

In vivo studies in mice provide a valuable model to test novel active pharmaceutical ingredients due to their low material need and the fact that mice are frequently used as a species for early efficacy models. However, preclinical in vitro evaluations of formulation principles in mice are still lacking. The development of novel in vitro and in silico models supported the preclinical formulation evaluation for the anti-infective corallopyronin A (CorA). To this end, CorA and solubility-enhanced amorphous solid dispersion formulations, comprising povidone or copovidone, were evaluated regarding biorelevant solubilities and dissolution in mouse-specific media. As an acidic compound, CorA and CorA-ASD formulations showed decreased solubilities in mice when compared with human-specific media. In biorelevant biphasic dissolution experiments CorA-povidone showed a three-fold higher fraction partitioned into the organic phase of the biphasic dissolution, when compared with CorA-copovidone. Bioavailabilities determined by pharmacokinetic studies in BALB/c mice correlated with the biphasic dissolution prediction and resulted in a Level C in vitro-in vivo correlation. In vitro cell experiments excluded intestinal efflux by P-glycoprotein or breast cancer resistance protein. By incorporating in vitro results into a physiologically based pharmacokinetic model, the plasma concentrations of CorA-ASD formulations were predicted and identified dissolution as the limiting factor for bioavailability.

6.
Antibiotics (Basel) ; 11(7)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35884174

RESUMEN

Corallopyronin A (CorA) is active against Gram-positive bacteria and targets the switch region of RNA polymerase. Because of the high frequency of mutation (FoM) leading to rifampicin resistance, we determined the CorA FoM in S. aureus using fluctuation analysis at 4 × minimum inhibitory concentration (MIC). Resistant mutants were characterized. S. aureus strains HG001, Mu50, N315, and USA300 had an MIC of 0.25 mg/L. The median FoM for CorA resistance was 1.5 × 10−8, 4.5-fold lower than the median FoM of 6.7 × 10−8 for rifampicin, and was reflected in a 4-fold lower mutation rate for CorA than rifampicin (6 × 10−9 for CorA vs. 2.5 × 10−8 for rifampicin). In CorA-resistant/rifampicin-sensitive strains, the majority of amino acid exchanges were S1127L in RpoB or K334N in RpoC. S. aureus Mu50, a rifampicin-resistant clinical isolate, yielded two further exchanges targeting amino acids L1131 and E1048 of the RpoB subunit. The plating of >1011 cells on agar containing a combination of 4 × MIC of rifampicin and 4 × MIC of CorA did not yield any growth. In conclusion, with proper usage, e.g., in combination therapy and good antibiotic stewardship, CorA is a potential antibiotic for treating S. aureus infections.

7.
Nat Prod Rep ; 39(9): 1705-1720, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35730490

RESUMEN

Covering: August 1984 up to January 2022Worldwide, increasing morbidity and mortality due to antibiotic-resistant microbial infections has been observed. Therefore, better prevention and control of infectious diseases, as well as appropriate use of approved antibacterial drugs are crucial. There is also an urgent need for the continuous development and supply of novel antibiotics. Thus, identifying new antibiotics and their further development is once again a priority of natural product research. The antibiotic corallopyronin A was discovered in the 1980s in the culture broth of the Myxobacterium Corallococcus coralloides and serves, in the context of this review, as a show case for the development of a naturally occurring antibiotic compound. The review demonstrates how a hard to obtain, barely water soluble and unstable compound such as corallopyronin A can be developed making use of sophisticated production and formulation approaches. Corallopyronin A is a bacterial DNA-dependent RNA polymerase inhibitor with a new target site and one of the few representatives of this class currently in preclinical development. Efficacy against Gram-positive and Gram-negative pathogens, e.g., Chlamydia trachomatis, Orientia tsutsugamushi, Staphylococcus aureus, and Wolbachia has been demonstrated. Due to its highly effective in vivo depletion of Wolbachia, which are essential endobacteria of most filarial nematode species, and its robust macrofilaricidal efficacy, corallopyronin A was selected as a preclinical candidate for the treatment of human filarial infections. This review highlights the discovery and production optimization approaches for corallopyronin A, as well as, recent preclinical efficacy results demonstrating a robust macrofilaricidal effect of the anti-Wolbachia candidate, and the solid formulation strategy which enhances the stability as well as the bioavailability of corallopyronin A.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Productos Biológicos/farmacología , Humanos , Lactonas , Agua
8.
Pharmaceutics ; 15(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36678686

RESUMEN

G protein-coupled receptors (GPCRs) transfer extracellular signals across cell membranes by activating intracellular heterotrimeric G proteins. Several studies suggested G proteins as novel drug targets for the treatment of complex diseases, e.g., asthma and cancer. Recently, we developed specific radiotracers, [³H]PSB-15900-FR and [³H]PSB-16254-YM, for the Gαq family of G proteins by tritiation of the macrocyclic natural products FR900359 (FR) and YM-254890 (YM). In the present study, we utilized these potent radioligands to perform autoradiography studies in tissues of healthy mice, mouse models of disease, and human tissues. Specific binding was high, while non-specific binding was extraordinarily low, giving nearly identical results for both radioligands. High expression levels of Gαq proteins were detected in healthy mouse organs showing the following rank order of potency: kidney > liver > brain > pancreas > lung > spleen, while expression in the heart was low. Organ sub-structures, e.g., of mouse brain and lung, were clearly distinguishable. Whereas an acute asthma model in mice did not result in altered Gαq protein expressions as compared to control animals, a cutaneous melanoma model displayed significantly increased expression in comparison to healthy skin. These results suggest the future development of Gαq-protein-binding radio-tracers as novel diagnostics.

9.
Pharmaceutics ; 15(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36678760

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a World Health Organization's high priority pathogen organism, with an estimated > 100,000 deaths worldwide in 2019. Thus, there is an unmet medical need for novel and resistance-breaking anti-infectives. The natural product Co-rallopyronin A (CorA), currently in preclinical development for filariasis, is efficacious against MRSA in vitro. In this study, we evaluated the pharmacokinetics of CorA after dosing in mice. Furthermore, we determined compound concentrations in target compartments, such as lung, kidney and thigh tissue, using LC-MS/MS. Based on the pharmacokinetic results, we evaluated the pharmacodynamic profile of CorA using the standard neutropenic thigh and lung infection models. We demonstrate that CorA is effective in both standard pharmacodynamic models. In addition to reaching effective levels in the lung and muscle, CorA was detected at high levels in the thigh bone. The data presented herein encourage the further exploration of the additional CorA indications treatment of MRSA- and methicillin-sensitive S. aureus- (MSSA) related infections.

10.
Pharmacol Res ; 173: 105880, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34506902

RESUMEN

G proteins represent intracellular switches that transduce signals relayed from G protein-coupled receptors. The structurally related macrocyclic depsipeptides FR900359 (FR) and YM-254890 (YM) are potent, selective inhibitors of the Gαq protein family. We recently discovered that radiolabeled FR and YM display strongly divergent residence times, which translates into significantly longer antiasthmatic effects of FR. The present study is aimed at investigating the molecular basis for this observed disparity. Based on docking studies, we mutated amino acid residues of the Gαq protein predicted to interact with FR or YM, and recombinantly expressed the mutated Gαq proteins in cells in which the native Gαq proteins had been knocked out by CRISPR-Cas9. Both radioligands showed similar association kinetics, and their binding followed a conformational selection mechanism, which was rationalized by molecular dynamics simulation studies. Several mutations of amino acid residues near the putative binding site of the "lipophilic anchors" of FR, especially those predicted to interact with the isopropyl group present in FR but not in YM, led to dramatically accelerated dissociation kinetics. Our data indicate that the long residence time of FR depends on lipophilic interactions within its binding site. The observed structure-kinetic relationships point to a complex binding mechanism of FR, which likely involves snap-lock- or dowel-like conformational changes of either ligand or protein, or both. These experimental data will be useful for the design of compounds with a desired residence time, a parameter that has now been recognized to be of utmost importance in drug development.


Asunto(s)
Depsipéptidos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Unión Proteica
11.
J Nat Prod ; 84(7): 1941-1953, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34197116

RESUMEN

Both the soil bacterium Chromobacterium vaccinii and the bacterial endosymbiont Candidatus Burkholderia crenata of the plant Ardisia crenata are producers of FR900359 (FR). This cyclic depsipeptide is a potent and selective Gq protein inhibitor used extensively to investigate the intracellular signaling of G protein coupled receptors (GPCRs). In this study, the metabolomes of both FR producers were investigated and compared using feature-based molecular networking (FBMN). As a result, 30 previously unknown FR derivatives were identified, one-third being unique to C. vaccinii. Guided by MS, a novel FR derivative, FR-6 (compound 1), was isolated, and its structure unambiguously established. In a whole-cell biosensing assay based on detection of dynamic mass redistribution (DMR) as readout for Gq inhibition, FR-6 suppressed Gq signaling with micromolar potency (pIC50 = 5.56). This functional activity was confirmed in radioligand binding assays (pKi = 7.50). This work demonstrates the power of molecular networking, guiding the way to a novel Gq-inhibiting FR derivative and underlining the potency of FR as a Gq inhibitor.


Asunto(s)
Depsipéptidos/farmacología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ardisia/química , Chromobacterium/química , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Hojas de la Planta/química
12.
ACS Pharmacol Transl Sci ; 4(2): 888-897, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33860209

RESUMEN

Guanine nucleotide-binding proteins (G proteins) transduce extracellular signals received by G protein-coupled receptors (GPCRs) to intracellular signaling cascades. While GPCRs represent the largest class of drug targets, G protein inhibition has only recently been recognized as a novel strategy for treating complex diseases such as asthma, inflammation, and cancer. The structurally similar macrocyclic depsipeptides FR900359 (FR) and YM-254890 (YM) are potent selective inhibitors of the Gq subfamily of G proteins. FR and YM differ in two positions, FR being more lipophilic than YM. Both compounds are utilized as pharmacological tools to block Gq proteins in vitro and in vivo. However, no detailed characterization of FR and YM has been performed, which is a prerequisite for the compounds' translation into clinical application. Here, we performed a thorough study of both compounds' physicochemical, pharmacokinetic, and pharmacological properties. Chemical stability was high across a large range of pH values, with FR being somewhat more stable than YM. Oral bioavailability and brain penetration of both depsipeptides were low. FR showed lower plasma protein binding and was metabolized significantly faster than YM by human and mouse liver microsomes. FR accumulated in lung after chronic intratracheal or intraperitoneal application, while YM was more distributed to other organs. Most strikingly, the previously observed longer residence time of FR resulted in a significantly prolonged pharmacologic effect as compared to YM in a methacholine-induced bronchoconstriction mouse model. These results prove that changes within a molecule which seem marginal compared to its structural complexity can lead to crucial pharmacological differences.

13.
Angew Chem Int Ed Engl ; 60(24): 13579-13586, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33768646

RESUMEN

Hypeptin is a cyclodepsipeptide antibiotic produced by Lysobacter sp. K5869, isolated from an environmental sample by the iChip technology, dedicated to the cultivation of previously uncultured microorganisms. Hypeptin shares structural features with teixobactin and exhibits potent activity against a broad spectrum of gram-positive pathogens. Using comprehensive in vivo and in vitro analyses, we show that hypeptin blocks bacterial cell wall biosynthesis by binding to multiple undecaprenyl pyrophosphate-containing biosynthesis intermediates, forming a stoichiometric 2:1 complex. Resistance to hypeptin did not readily develop in vitro. Analysis of the hypeptin biosynthetic gene cluster (BGC) supported a model for the synthesis of the octapeptide. Within the BGC, two hydroxylases were identified and characterized, responsible for the stereoselective ß-hydroxylation of four building blocks when bound to peptidyl carrier proteins. In vitro hydroxylation assays corroborate the biosynthetic hypothesis and lead to the proposal of a refined structure for hypeptin.


Asunto(s)
Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/biosíntesis , Péptidos Catiónicos Antimicrobianos/farmacología , Pared Celular/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Lysobacter/genética , Pruebas de Sensibilidad Microbiana , Oxigenasas de Función Mixta/genética , Familia de Multigenes , Péptido Sintasas/genética
14.
J Biol Chem ; 296: 100472, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639168

RESUMEN

Heterotrimeric G protein subunits Gαq and Gα11 are inhibited by two cyclic depsipeptides, FR900359 (FR) and YM-254890 (YM), both of which are being used widely to implicate Gq/11 proteins in the regulation of diverse biological processes. An emerging major research question therefore is whether the cellular effects of both inhibitors are on-target, that is, mediated via specific inhibition of Gq/11 proteins, or off-target, that is, the result of nonspecific interactions with other proteins. Here we introduce a versatile experimental strategy to discriminate between these possibilities. We developed a Gαq variant with preserved catalytic activity, but refractory to FR/YM inhibition. A minimum of two amino acid changes were required and sufficient to achieve complete inhibitor resistance. We characterized the novel mutant in HEK293 cells depleted by CRISPR-Cas9 of endogenous Gαq and Gα11 to ensure precise control over the Gα-dependent cellular signaling route. Using a battery of cellular outcomes with known and concealed Gq contribution, we found that FR/YM specifically inhibited cellular signals after Gαq introduction via transient transfection. Conversely, both inhibitors were inert across all assays in cells expressing the drug-resistant variant. These findings eliminate the possibility that inhibition of non-Gq proteins contributes to the cellular effects of the two depsipeptides. We conclude that combined application of FR or YM along with the drug-resistant Gαq variant is a powerful in vitro strategy to discern on-target Gq against off-target non-Gq action. Consequently, it should be of high value for uncovering Gq input to complex biological processes with high accuracy and the requisite specificity.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Subunidades alfa de la Proteína de Unión al GTP/fisiología , Transducción de Señal/fisiología , Depsipéptidos/farmacología , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/fisiología , Humanos , Péptidos Cíclicos/farmacología , Transducción de Señal/efectos de los fármacos
15.
Nat Commun ; 12(1): 144, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420046

RESUMEN

The potent and selective Gq protein inhibitor depsipeptide FR900359 (FR), originally discovered as the product of an uncultivable plant endosymbiont, is synthesized by a complex biosynthetic system comprising two nonribosomal peptide synthetase (NRPS) assembly lines. Here we characterize a cultivable bacterial FR producer, enabling detailed investigations into biosynthesis and attachment of the functionally important FR side chain. We reconstitute side chain assembly by the monomodular NRPS FrsA and the non-heme monooxygenase FrsH, and characterize intermolecular side chain transesterification to the final macrocyclic intermediate FR-Core, mediated by the FrsA thioesterase domain. We harness FrsA substrate promiscuity to generate FR analogs with altered side chains and demonstrate indispensability of the FR side chain for efficient Gq inhibition by comparative bioactivity, toxicity and docking studies. Finally, evolution of FR and side chain biosynthesis is discussed based on bioinformatics analyses. Side chain transesterification boosts potency and target affinity of selective Gq inhibitor natural products.


Asunto(s)
Proteínas Bacterianas/farmacología , Chromobacterium/metabolismo , Depsipéptidos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Animales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Depsipéptidos/biosíntesis , Depsipéptidos/química , Depsipéptidos/aislamiento & purificación , Esterasas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Hemípteros , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
16.
PLoS Negl Trop Dis ; 14(12): e0008930, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33284808

RESUMEN

Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal-adult-worm killing-treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4-5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti-Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti-Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti-Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug.


Asunto(s)
Filariasis/tratamiento farmacológico , Filaricidas/uso terapéutico , Filarioidea/efectos de los fármacos , Lactonas/uso terapéutico , Wolbachia/efectos de los fármacos , Animales , Femenino , Filariasis/parasitología , Filarioidea/microbiología , Ratones , Ratones Endogámicos BALB C , Simbiosis/efectos de los fármacos
17.
Pharmaceutics ; 12(11)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217948

RESUMEN

Novel-antibiotics are urgently needed to combat an increase in morbidity and mortality due to resistant bacteria. The preclinical candidate corallopyronin A (CorA) is a potent antibiotic against Gram-positive and some Gram-negative pathogens for which a solid oral formulation was needed for further preclinical testing of the active pharmaceutical ingredient (API). The neat API CorA is poorly water-soluble and instable at room temperature, both crucial characteristics to be addressed and overcome for use as an oral antibiotic. Therefore, amorphous solid dispersion (ASD) was chosen as formulation principle. The formulations were prepared by spray-drying, comprising the water-soluble polymers povidone and copovidone. Stability (high-performance liquid chromatography, Fourier-transform-infrared spectroscopy, differential scanning calorimetry), dissolution (biphasic dissolution), and solubility (biphasic dissolution, Pion's T3 apparatus) properties were analyzed. Pharmacokinetic evaluations after intravenous and oral administration were conducted in BALB/c mice. The results demonstrated that the ASD formulation principle is a suitable stability- and solubility-enhancing oral formulation strategy for the API CorA to be used in preclinical and clinical trials and as a potential market product.

18.
Front Chem ; 8: 833, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173765

RESUMEN

The cyclic depsipeptide FR900359 (FR) isolated from the plant Ardisia crenata and produced by endosymbiotic bacteria acts as a selective Gq protein inhibitor. It is a powerful tool to study G protein-coupled receptor signaling, and has potential as a novel drug for the treatment of pulmonary diseases and cancer. For pharmacokinetic studies, sensitive quantitative measurements of drug levels are required. In the present study we established an LC-MS/MS method to detect nanomolar concentrations of FR and the structurally related natural product YM-254890 (YM) in biological samples. HPLC separation coupled to ESI-QTOF-MS and UV-VIS detection was applied. For identification and quantification, the extract ion chromatogram (EIC) of M+1 was evaluated. Limits of detection (LOD) of 0.53-0.55 nM and limits of quantification (LOQ) of 1.6-1.7 nM were achieved for both FR and YM. This protocol was subsequently applied to determine FR concentrations in mouse organs and tissues after peroral application of the drug. A three-step liquid-liquid extraction protocol was established, which resulted in adequate recovery rates of typically around 50%. The results indicated low peroral absorption of FR. Besides the gut, highest concentrations were determined in eye and kidney. The developed analytical method will be useful for preclinical studies to evaluate these potent Gq protein inhibitors, which may have potential as future drugs for complex diseases.

19.
J Nat Prod ; 83(9): 2785-2796, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32910650

RESUMEN

Phyllidiid nudibranchs are brightly colored gastropod mollusks, frequently encountered in coral reefs of the tropical Indo-Pacific. The lack of a protective shell is suggested to be compensated by toxic secondary metabolites that are sequestered from specific prey sponges. Our ongoing reconstruction of phyllidiid phylogeny using molecular data of more than 700 specimens, based on published data and newly collected specimens in various seasons and localities around North Sulawesi (Indonesia), demonstrates that Phyllidiella pustulosa is a species complex with at least seven well-supported clades. A metabolomic analysis of 52 specimens from all seven clades of P. pustulosa was performed. Secondary metabolite profiles were found to correlate with the phylogenetic study and not the prevailing food sponges as expected. GNPS molecular networking revealed a unique chemotype in clade 6. Detailed chemical analysis of a specimen from this chemically and genetically distinct P. pustulosa clade led to the identification of seven new sesquiterpenoids with a rare dichloroimidic moiety (1 and 4) and derivatives thereof (2, 3, 5-7). Our findings suggest that P. pustulosa clades should be raised to the species level.


Asunto(s)
Gastrópodos/química , Gastrópodos/genética , Metaboloma/genética , Sesquiterpenos/química , Animales , ADN/biosíntesis , ADN/genética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Filogenia
20.
Beilstein J Org Chem ; 16: 1596-1605, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32704326

RESUMEN

Investigations on the biochemical relationship between Doriprismatica stellata (Chromodorididae, Doridoidea) nudibranchs, their egg ribbons, and the associated dietary sponge Spongia cf. agaricina (Demospongiae, Porifera) led to the isolation of the structurally new scalarane-type sesterterpene 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin, with an unprecedented position of the cyclopropane ring annelated to the ring A. Unlike other scalaranes, which are most often functionalized at C-12 of ring C, it bears two acetoxy groups at C-11 and C-24 instead. The compound was present in all three samples, supporting the dietary relationship between chromodorid nudibranchs of the genus Doriprismatica and scalarane-containing dictyoceratid sponges of the Spongiidae family. The results also indicate that D. stellata passes the scalarane metabolite on to its egg ribbons, most likely for protective purposes. The scalarane showed antibacterial activity against the Gram-positive bacteria Arthrobacter crystallopoietes (DSM 20117) and Bacillus megaterium (DSM 32).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...