Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Vet Microbiol ; 231: 116-119, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30955798

RESUMEN

The use of immunomodulators is a promising alternative to the use of antibiotics for therapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease. Previously we demonstrated a replication-defective adenovirus vector that expresses porcine granulocyte colony-stimulating factor (G-CSF) elicited a sustained neutrophilia, lasting nearly 3 weeks, which may be beneficial to prevent bacterial diseases during times of peak incidence. In a pilot study using the vectored G-CSF with a Caesarian-derived, colostrum-deprived (CDCD) pig model of Streptococcus suis disease, only 1 of 4 pigs given G-CSF developed disease, while 3 of 4 non-treated pigs developed Streptococcal disease. In a subsequent study using a larger number of pigs, although there was no difference in overall survival, there was a longer mean survival time in G-CSF treated pigs. S. suis infection is more severe in CDCD pigs than conventionally raised pigs, consequently results in the field may be superior to the ones reported in this study. Although there were positive effects from the use of G-CSF in this study, further research is needed to determine if improved clinical outcomes could be achieved under field conditions and whether the use of G-CSF in pigs to induce a sustained increase in circulating neutrophil numbers may be useful as an adjunct to antibiotics to diminish the severity of Streptococcal disease, especially during times of stress and pathogen exposure such as post-weaning.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Neutrófilos/inmunología , Infecciones Estreptocócicas/tratamiento farmacológico , Streptococcus suis/efectos de los fármacos , Porcinos/inmunología , Adenoviridae/genética , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Inmunomodulación , Inyecciones Intramusculares , Proyectos Piloto , Embarazo , Infecciones Estreptocócicas/mortalidad , Tasa de Supervivencia , Porcinos/microbiología
2.
Front Genet ; 9: 236, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30023000

RESUMEN

Bovine leukemia virus (BLV) affects cattle health and productivity worldwide, causing abnormal immune function and immunosuppression. Transfer RNA fragments (tRFs) are known to be involved in inhibition of gene expression and have been associated with stress and immune response, tumor growth, and viral infection. The objective of this study was to identify tRFs associated with antibody response to BLV in Holstein cattle. Sera from 14 animals were collected to establish IgG reactivity to BLV by ELISA. Seven animals were seropositive (positive group) and seven were seronegative (negative group) for BLV exposure. Leukocytes from each animal were collected and tRFs were extracted for sequencing. tRF5GlnCTG, tRF5GlnTTG, and tRF5HisGTG, were significantly different between seropositive and seronegative groups (P < 0.0067). In all cases the positive group had a lower number of normalized sequences for tRFs when compared to the negative group. Result suggests that tRF5s could potentially be used as biomarkers to establish exposure of cattle to BLV.

3.
Infect Immun ; 85(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28559403

RESUMEN

Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Additionally, B. bronchiseptica is capable of establishing long-term or chronic infections in swine. Bacterial biofilms are increasingly recognized as important contributors to chronic bacterial infections. Recently the polysaccharide locus bpsABCD has been demonstrated to serve a critical role in the development of mature biofilms formed by the sequenced laboratory strain of B. bronchiseptica We hypothesized that swine isolates would also have the ability to form mature biofilms and the bpsABCD locus would serve a key role in this process. A mutant containing an in-frame deletion of the bpsABCD structural genes was constructed in a wild-type swine isolate and found to be negative for poly-N-acetylglucosamine (PNAG)-like material by immunoblot assay. Further, the bpsABCD locus was found to be required for the development and maintenance of the three-dimensional structures under continuous-flow conditions. To investigate the contribution of the bpsABCD locus to the pathogenesis of B. bronchiseptica in swine, the KM22Δbps mutant was compared to the wild-type swine isolate for the ability to colonize and cause disease in pigs. The bpsABCD locus was found to not be required for persistence in the upper respiratory tract of swine. Additionally, the bpsABCD locus did not affect the development of anti-Bordetella humoral immunity, did not contribute to disease severity, and did not mediate protection from complement-mediated killing. However, the bpsABCD locus was found to enhance survival in the lower respiratory tract of swine.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Infecciones por Bordetella/microbiología , Bordetella bronchiseptica/patogenicidad , Polisacáridos Bacterianos/metabolismo , Tráquea/microbiología , Animales , Proteínas Bacterianas/genética , Infecciones por Bordetella/inmunología , Bordetella bronchiseptica/química , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/inmunología , Bronquios/microbiología , Regulación Bacteriana de la Expresión Génica , Mutación , Nariz/microbiología , Porcinos
4.
Front Vet Sci ; 3: 113, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018909

RESUMEN

There are genetic conditions that influence production in dairy and beef cattle. The objective of this review was to describe relevant genetic conditions that have been associated with productivity and health in cattle. Genes or genomic regions that have been identified as a candidate for the condition will be included, and the genetic basis of the condition will be defined. Genes and genetic conditions included in this review are bovine leukocyte adhesion deficiency, deficiency of the uridine monophosphate synthase, bovine chronic interstitial nephritis, horn development, myostatin, complex vertebral malformation, leptin, osteopetrosis, apoptosis peptide activating factor 1, chondrodysplastic dwarfism, caseins, calpastatin, umbilical hernia, lactoglobulin, citrullinemia, cholesterol deficiency, prions, thyroglobulin, diacylglycerol acyltransferase, syndactyly, maple syrup urine disease, slick hair, Factor XI deficiency, and µ-Calpain. This review is not meant to be comprehensive, and relevant information is provided to ascertain genetic markers associated with the conditions.

5.
Vet Immunol Immunopathol ; 179: 70-6, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27590428

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for one of the most economically important diseases in swine worldwide. It causes reproductive failure in sows and pneumonia in pigs that predisposes them to secondary bacterial infections. Methods to control PRRSV and/or limit secondary bacterial infections are desired to reduce the impact of this virus on animal health. Neutrophils play a major role in combatting infection; they can act as phagocytes as well as produce and release lytic enzymes that have potent antimicrobial effects leading to the destruction and clearance of bacterial pathogens. Granulocyte-colony stimulating factor (G-CSF) is a cytokine that controls the production, differentiation and function of granulocytes (including neutrophils) from the bone marrow. Recent work from our laboratory has shown that encoding porcine G-CSF in a replication-defective adenovirus (Ad5-G-CSF) and delivering a single dose to pigs induced a neutrophilia lasting more than two weeks. As secondary bacterial infection is a common occurrence following PRRSV infection, particularly following challenge with highly pathogenic (HP)-PRRSV, the aim of the current study was to evaluate the effectiveness of a single prophylactic dose of adenovirus-encoded G-CSF to mitigate secondary bacterial disease associated with HP-PRRSV infection. Administration of Ad5-G-CSF induced a significant neutrophilia as expected. However, between 1 and 2days following HP-PRRSV challenge the number of circulating neutrophils decreased dramatically in the HP-PRRSV infected group, but not the non-infected Ad5-G-CSF group. Ad5-G-CSF administration induced monocytosis as well, which was also reduced by HP-PRRSV challenge. There was no difference in the progression of disease between the Ad5-G-CSF and Ad5-empty groups following HP-PRRSV challenge, with pneumonia and systemic bacterial infection occurring in both treatment groups. Given the impact of HP-PRRSV infection on the neutrophilia induced by the Ad5-G-CSF administration, additional studies are warranted to evaluate the timing of Ad5-G-CSF induced neutrophilia and multiple G-CSF inoculations on protection against secondary bacterial infection following PRRSV infection. Nevertheless, this study may provide insight into the pathogenesis of HP-PRRSV.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/genética , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Adenoviridae/genética , Animales , Inmunidad Innata/efectos de los fármacos , Síndrome Respiratorio y de la Reproducción Porcina/microbiología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Porcinos
6.
Front Vet Sci ; 3: 66, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27610361

RESUMEN

Salmonella colonization of food animals is a concern for animal health and public health as a food safety risk. Various obstacles impede the effort to reduce asymptomatic Salmonella carriage in food animals, including the existence of numerous serovars and the ubiquitous nature of Salmonella. To develop an intervention strategy that is non-specific yet effective against diverse Salmonella serovars, we explored the prophylactic use of a cytokine to decrease Salmonella in swine by boosting the host's innate immune system. Granulocyte-colony stimulating factor (G-CSF) is the major cytokine regulating the production, differentiation, function, and survival of neutrophils. Neutrophils play a critical role in the response to Salmonella; therefore, we evaluated the vectored-delivery of porcine G-CSF as a prophylactic to reduce Salmonella in pigs. Crossbred pigs, 5 weeks of age, were intramuscularly injected with a replication-defective human adenovirus (Ad5) engineered to express porcine G-CSF (Ad5-G-CSF, n = 9). Control pigs received the same Ad5 vector lacking the gene encoding G-CSF (Ad5-empty, n = 7). Four days later, all pigs (n = 16) were intranasally inoculated with 1 × 10(7) colony forming unit (CFU) of Salmonella enterica serovar Typhimurium UK1. At 2 and 3 days post-challenge with Salmonella, Ad5-G-CSF-treated pigs shed significantly less Salmonella (~10(3) CFU/g) in their feces than Ad5-empty-treated pigs (~10(4)-10(5) CFU/g; P < 0.05). A significant 4-log reduction in tonsil colonization was also observed in the Ad5-G-CSF-treated pigs at 7 days post-challenge (P < 0.05). In the gastrointestinal tract, the Peyer's patch region of the ileum exhibited a significant 0.5-log reduction in colonization in the Ad5-G-CSF-treated pigs (P < 0.05). The microbiota of all challenged pigs was assessed by sequencing and analyzing the V1-V3 region of the 16S rRNA gene from fecal DNA samples. The microbial community structure of Salmonella-challenged pigs was less disturbed post-challenge in the Ad5-G-CSF-treated pigs than the Ad5-empty-treated pigs. This suggests that Ad5-G-CSF administration mitigated changes in the microbial community structure caused by Salmonella challenge. Collectively, these data suggest that delivery of a targeted immunostimulant to enhance neutropoiesis may be a strategy to reduce Salmonella colonization, potentially during periods of immunological stress.

7.
Virology ; 471-473: 93-104, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25461535

RESUMEN

Live-attenuated influenza virus (LAIV) vaccines may provide cross-protection against contemporary influenza A virus (IAV) in swine. Conversely, whole inactivated virus (WIV) vaccines have the potential risk of vaccine-associated enhanced respiratory disease (VAERD) when challenged with IAV of substantial antigenic drift. A temperature sensitive, intranasal H1N2 LAIV was compared to wild type exposure (WT) and an intramuscular WIV vaccine in a model shown to induce VAERD. WIV vaccinated swine challenged with pandemic A/H1N1 (H1N1pdm09) were not protected from infection and demonstrated severe respiratory disease consistent with VAERD. Lung lesions were mild and challenge virus was not detected in the respiratory tract of LAIV vaccinates. High levels of post-vaccination IgG serum antibodies targeting the H1N1pdm09 HA2 stalk domain were exclusively detected in the WIV group and associated with increased H1N1pdm09 virus infectivity in MDCK cells. In contrast, infection-enhancing antibodies were not detected in the serum of LAIV vaccinates and VAERD was not observed.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/prevención & control , Animales , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/sangre , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/análisis , Perros , Femenino , Inmunidad Mucosa , Pulmón/patología , Células de Riñón Canino Madin Darby , Masculino , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Tráquea/inmunología , Tráquea/patología , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunología
8.
Vaccine ; 32(48): 6457-62, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25285886

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant reproductive losses in the sow herd and respiratory disease in growing pigs. The virus belongs to the family Arteriviridae and there are two major genotypes. Type 1 is represented by Lelystad virus, the European prototype virus, and Type 2 is represented by the North American prototype virus, VR-2332. Depending on husbandry, immune status of the herd, and virulence of the isolate, the severity of disease and magnitude of economic loss can be variable. Vaccine use is not always successful indicating a lack of cross-protection between vaccine strains and circulating wild-type viruses. To date, there is no clear method to demonstrate if a vaccine confers protection against a specific isolate except for empirical animal studies. In 2006, a new lineage of Type 2 PRRSV emerged in Chinese swine herds that were suffering dramatic losses resulting in those viruses being described as "Highly Pathogenic PRRSV" (HP-PRRSV). Experimental reproduction of severe disease with HP-PRRSV isolates and virus derived from HP-PRRSV clones demonstrated the causal role of this virus. Recently, partial heterologous protection has been reported for Type 1 and Type 2 attenuated PRRSV vaccines against challenge by different Chinese HP-PRRSV isolates providing some hope for reducing economic loss. This paper reports the efficacy of a commercially available Type 2 attenuated vaccine in young pigs against heterologous challenge with a Chinese and Vietnamese HP-PRRSV isolate. When compared to unvaccinated pigs, vaccination decreased the length of viremia and viral titer, diminished the time of high fever and reduced macroscopic lung scores following homologous and heterologous PRRSV challenge. These results demonstrate the potential use of vaccine as an aid in the control of HP-PRRSV outbreaks.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Vacunas Virales/inmunología , Animales , Líquido del Lavado Bronquioalveolar/virología , Inmunidad Humoral , Pulmón/patología , Pulmón/virología , Porcinos , Vacunación/veterinaria , Vacunas Atenuadas/inmunología , Carga Viral
9.
Viral Immunol ; 27(7): 334-42, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24978861

RESUMEN

Whole inactivated virus (WIV) vaccines for influenza A virus (IAV) provide limited cross-protection to diverse antigenic strains that are circulating or may emerge in a population. Maternal vaccination is used to protect neonatal animals from disease through passive transfer of immunity. It is desirable to vaccinate at a young age to induce active immunity that provides protection against infection before maternal immunity wanes. However, maternal-derived immunity (MDI; antibody or cells) can interfere with vaccine priming. Previous work indicates that vaccine-associated enhanced respiratory disease (VAERD) occurs in pigs following heterologous IAV challenge if pigs were previously vaccinated with WIV vaccine in the presence of matched MDI. However, the component of MDI (antibody or cells) that is required for the mispriming of piglet immunity has not been determined. While antibody from colostrum is absorbed into piglet circulation regardless of the sow from which it receives colostrum, transfer of maternal cells requires colostrum from the biological dam. We used cross-fostering (CF) as a tool to determine if maternal cells are required for the mispriming of piglet immunity upon WIV vaccination in the presence of MDI. Piglets vaccinated in the presence of MDI, regardless of CF, displayed characteristics of VAERD following heterologous challenge. MDI alone (no piglet vaccination) did not provide cross-protection against the antigenic variant. However, it did not induce VAERD. WIV vaccination provided complete protection against homologous challenge when delivered to piglets without MDI. Vaccination in the presence of MDI inhibited an increase in hemagglutination inhibiting (HI) antibody titers to vaccine antigen, but did not alter development of total immunoglobulin levels to vaccine virus. Taken together, the cellular component of MDI did not contribute to the mispriming of piglet immunity to WIV vaccine, but maternal-derived antibody (MDA) alone was sufficient. Future work is aimed at understanding how MDA alters WIV vaccine immunogenicity.


Asunto(s)
Anticuerpos Antivirales/sangre , Inmunidad Materno-Adquirida/fisiología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades Respiratorias/veterinaria , Enfermedades de los Porcinos/inmunología , Vacunas Virales/inmunología , Animales , Femenino , Inmunoglobulina G/sangre , Subtipo H3N2 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Enfermedades Respiratorias/prevención & control , Enfermedades Respiratorias/virología , Porcinos , Enfermedades de los Porcinos/virología , Vacunación
10.
Anim Front ; 4(1): 44-45, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32288969

RESUMEN

On 16 May 2013, the USDA Animal and Plant Health Inspection Service, National Veterinary Services Laboratories reported the detection of porcine epidemic diarrhea virus in the United States for the first time.This virus causes severe diarrhea and vomiting in young pigs. Porcine epidemic diarrhea virus does not infect humans and is not a food safety risk.This virus is already found in many countries around the world, and there is no US official regulation of the virus and no export restrictions to other countries.

11.
Infect Immun ; 82(3): 1092-103, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24366249

RESUMEN

Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica utilize isolates derived from hosts other than pigs in conjunction with rodent infection models. Based on previous in vivo mouse studies, we hypothesized that the B. bronchiseptica type III secretion system (T3SS) would be required for maximal disease severity and persistence in the swine lower respiratory tract. To examine the contribution of the T3SS to the pathogenesis of B. bronchiseptica in swine, we compared the abilities of a virulent swine isolate and an isogenic T3SS mutant to colonize, cause disease, and be transmitted from host to host. We found that the T3SS is required for maximal persistence throughout the lower swine respiratory tract and contributed significantly to the development of nasal lesions and pneumonia. However, the T3SS mutant and the wild-type parent are equally capable of transmission among swine by both direct and indirect routes, demonstrating that transmission can occur even with attenuated disease. Our data further suggest that the T3SS skews the adaptive immune response in swine by hindering the development of serum anti-Bordetella antibody levels and inducing an interleukin-10 (IL-10) cell-mediated response, likely contributing to the persistence of B. bronchiseptica in the respiratory tract. Overall, our results demonstrate that the Bordetella T3SS is required for maximal persistence and disease severity in pigs, but not for transmission.


Asunto(s)
Sistemas de Secreción Bacterianos/inmunología , Infecciones por Bordetella/inmunología , Bordetella bronchiseptica/inmunología , Factores de Virulencia de Bordetella/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Infecciones por Bordetella/microbiología , Proteínas Portadoras/inmunología , Interleucina-10/inmunología , Péptidos/inmunología , Sistema Respiratorio/inmunología , Sistema Respiratorio/microbiología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología
12.
Virology ; 446(1-2): 238-50, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24074587

RESUMEN

An infectious clone of a highly pathogenic PRRSV strain from Vietnam (rSRV07) was prepared and was demonstrated to contain multiple amino acid differences throughout the genome when compared to Chinese highly pathogenic PRRSV strain rJXwn06. Virus rescued from the rSRV07 infectious clone was compared to rJXwn06 and US Type 2 prototype strain VR-2332 to examine the effects of virus genotype and phenotype on in vitro growth, and virus challenge dose on in vivo pathogenicity and host response. After swine inoculation at high- and low-doses of virus, rSRV07 was shown to replicate to an approximately 10-fold lower level in serum than rJXwn06, produced lower body temperatures than rJXwn06 and resulted in decreased mortality. Furthermore, a 9-plex cytokine panel revealed that the cytokine responses varied between different strains of PRRSV, as well as between tissues examined and by inoculum dose.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/patología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Animales , Temperatura Corporal , China , Citocinas/sangre , Modelos Animales de Enfermedad , Genotipo , Fenotipo , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , ARN Viral/genética , Suero/virología , Análisis de Supervivencia , Porcinos , Estados Unidos , Vietnam , Carga Viral , Virulencia
13.
Viral Immunol ; 26(5): 314-21, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24033080

RESUMEN

The implications of sequential prime and challenge with mismatched influenza A viruses is a concern in mammals, including humans. We evaluated the ability of pigs affected with vaccine-associated enhanced respiratory disease (VAERD) to generate a humoral immune response against the heterologous challenge virus inciting the VAERD. Vaccinated and challenged (V/C) pigs were administered an inactivated swine δ-cluster H1N2 (MN08) vaccine with an HA similar to pre-2009 seasonal human viruses and challenged with heterologous A(H1N1) pandemic 2009 (H1N1pdm09). Vaccination induced MN08-specific hemagglutination inhibition (HI) antibody but not cross-reacting H1N1pdm09 HI antibody. However, vaccinated pigs demonstrated significantly higher post-challenge anti-H1N1pdm09 serum neutralizing (SN) antibodies at 14 and 21 days post inoculation (dpi) compared to nonvaccinated, challenged pigs (NV/C), indicating a priming effect of the vaccine. Serum and lung whole virus anti-H1N1pdm09 IgG ELISA antibodies in the vaccinated group were significantly higher than the challenge only pigs at all-time points evaluated. Lung IgA ELISA antibodies to both antigens were detected at 2, 5, and 21 dpi in vaccine-primed pigs, contrasted against mucosal ELISA antibody responses detected only at 21 dpi in the naïve-challenged group. Collectively, vaccine-primed pigs demonstrated a robust humoral immune response and elevated local adaptive cytokine levels, indicating VAERD does not adversely affect the induction of an immune response to challenge with heterologous virus despite the severe clinical disease and underlying lung pathology. Thus, original antigenic sin does not appear to be a component of VAERD.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones del Sistema Respiratorio/inmunología , Inmunidad Adaptativa/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas/inmunología , Citocinas/metabolismo , Variación Genética/inmunología , Pruebas de Inhibición de Hemaglutinación , Inmunoglobulina G/inmunología , Vacunas contra la Influenza/administración & dosificación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Pandemias , Infecciones del Sistema Respiratorio/virología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Vacunación/veterinaria
14.
J Virol ; 87(17): 9895-903, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23824815

RESUMEN

Vaccines provide a primary means to limit disease but may not be effective at blocking infection and pathogen transmission. The objective of the present study was to evaluate the efficacy of commercial inactivated swine influenza A virus (IAV) vaccines and experimental live attenuated influenza virus (LAIV) vaccines against infection with H3N2 virus and subsequent indirect transmission to naive pigs. The H3N2 virus evaluated was similar to the H3N2v detected in humans during 2011-2012, which was associated with swine contact at agricultural fairs. One commercial vaccine provided partial protection measured by reduced nasal shedding; however, indirect contacts became infected, indicating that the reduction in nasal shedding did not prevent aerosol transmission. One LAIV vaccine provided complete protection, and none of the indirect-contact pigs became infected. Clinical disease was not observed in any group, including nonvaccinated animals, a consistent observation in pigs infected with contemporary reassortant H3N2 swine viruses. Serum hemagglutination inhibition antibody titers against the challenge virus were not predictive of efficacy; titers following vaccination with a LAIV that provided sterilizing immunity were below the level considered protective, yet titers in a commercial vaccine group that was not protected were above that level. While vaccination with currently approved commercial inactivated products did not fully prevent transmission, certain vaccines may provide a benefit by limitating shedding, transmission, and zoonotic spillover of antigenically similar H3N2 viruses at agriculture fairs when administered appropriately and used in conjunction with additional control measures.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/farmacología , Infecciones por Orthomyxoviridae/veterinaria , Sus scrofa/inmunología , Sus scrofa/virología , Enfermedades de los Porcinos/prevención & control , Animales , Anticuerpos Antivirales/sangre , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/veterinaria , Genes Virales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Gripe Humana/prevención & control , Gripe Humana/transmisión , Gripe Humana/virología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/transmisión , Filogenia , Virus Reordenados/genética , Virus Reordenados/inmunología , Virus Reordenados/patogenicidad , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/transmisión , Vacunas Atenuadas/farmacología , Vacunas de Productos Inactivados/farmacología , Esparcimiento de Virus
15.
Biologicals ; 41(6): 368-76, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23891494

RESUMEN

The use of immunomodulators is a promising area for biotherapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease. Cytokines, including granulocyte-colony stimulating factor (G-CSF), have been investigated for potential value as biotherapeutic proteins. G-CSF enhances the production and release of neutrophils from bone marrow and is already licensed for use in humans. A limitation of cytokines as immunomodulators is their short half-life which may limit their usefulness as a one-time injectable in production-animal medicine. Here we report that administration of recombinant G-CSF induced a transient neutrophilia in pigs; however, delivery of porcine G-CSF encoded in a replication-defective adenovirus (Ad5) vector significantly increased the neutrophilia pharmacodynamics effect. Pigs given one injection of the Ad5-G-CSF had a neutrophilia that peaked between days 3-11 post-treatment and neutrophil counts remained elevated for more than 2 weeks. Neutrophils from Ad5-G-CSF treated pigs were fully functional based on their ability to release neutrophil extracellular traps and oxidative metabolism after in vitro stimulation. Since acceptable alternatives to the use of antibiotics in food-animal production need to be explored, we provide evidence for G-CSF as a possible candidate for agents in which neutrophils can provide protection.


Asunto(s)
Adenoviridae/genética , Virus Defectuosos/genética , Factor Estimulante de Colonias de Granulocitos/fisiología , Neutrófilos/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Vectores Genéticos/genética , Factor Estimulante de Colonias de Granulocitos/genética , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Mutación , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Proteínas Recombinantes/farmacología , Homología de Secuencia de Aminoácido , Porcinos , Factores de Tiempo , Replicación Viral
16.
Clin Vaccine Immunol ; 20(9): 1466-72, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23885030

RESUMEN

Haemophilus parasuis causes Glässer's disease, a syndrome of polyserositis, meningitis, and arthritis in swine. Previous studies with H. parasuis have revealed virulence disparity among isolates and inconsistent heterologous protection. In this study, virulence, direct transmission, and heterologous protection of 4 isolates of H. parasuis (SW114, 12939, MN-H, and 29755) were evaluated using a highly susceptible pig model. In an initial experiment, isolates 12939, MN-H, and 29755 caused Glässer's disease, while strain SW114 failed to cause any clinical signs of disease. One pig from each group challenged with MN-H or 29755 failed to develop clinical disease but was able to transmit H. parasuis to noninfected pigs, which subsequently developed Glässer's disease. Pigs colonized with SW114, 29755, or MN-H that were free of clinical disease were protected from a subsequent challenge with isolate 12939. In a following experiment, pigs vaccinated with strain SW114 given as either a bacterin intramuscularly or a live intranasal vaccine were protected from subsequent challenge with isolate 12939; however, some pigs given live SW114 developed arthritis. Overall these studies demonstrated that pigs infected with virulent isolates of H. parasuis can remain healthy and serve as reservoirs for transmission to naive pigs and that heterologous protection among H. parasuis isolates is possible. In addition, further attenuation of strain SW114 is necessary if it is to be used as a live vaccine.


Asunto(s)
Protección Cruzada , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/prevención & control , Haemophilus parasuis/inmunología , Haemophilus parasuis/patogenicidad , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Animales , Modelos Animales de Enfermedad , Infecciones por Haemophilus/transmisión , Vacunas contra Haemophilus/administración & dosificación , Vacunas contra Haemophilus/inmunología , Haemophilus parasuis/aislamiento & purificación , Porcinos , Enfermedades de los Porcinos/transmisión
17.
Vet Microbiol ; 165(3-4): 224-33, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23642415

RESUMEN

Commissioned by President Dwight Eisenhower in 1958 and opened with a dedication ceremony in December 1961, the USDA, Agricultural Research Service (ARS), National Animal Disease Center (NADC) celebrated its 50-year anniversary in November 2011. Over these 50 years, the NADC established itself among the world's premier animal health research centers. Its historic mission has been to conduct basic and applied research on selected endemic diseases of economic importance to the U.S. livestock and poultry industries. Research from NADC has impacted control or management efforts on nearly every major animal disease in the United States since 1961. For example, diagnostic tests and vaccines developed by NADC scientists to detect and prevent hog cholera were integral in the ultimate eradication of this costly swine disease from the U.S. Most major veterinary vaccines for critical diseases such as brucellosis and leptospirosis in cattle, porcine respiratory and reproductive syndrome (PRRS), porcine parvovirus and influenza in swine had their research origins or were developed and tested at the NADC. Additional discoveries made by NADC scientists have also resulted in the development of a nutritional approach and feed additives to prevent milk fever in transition dairy cattle. More recently, NADC's archive of historic swine influenza viruses combined with an established critical mass of influenza research expertise enabled NADC researchers to lead an effective national research response to the pandemic associated with the novel 2009 H1N1 influenza virus. This review commemorates some of the key animal health contributions in NADC's first 50 years, recaps the newly completed modernization of the center into new facilities, and offers highlights of the ongoing research that will define NADC's mission going forward.


Asunto(s)
Agricultura , Enfermedades de los Animales/prevención & control , Investigación/normas , United States Department of Agriculture/normas , United States Department of Agriculture/tendencias , Enfermedades de los Animales/diagnóstico , Animales , Enfermedades Transmitidas por los Alimentos/prevención & control , Historia del Siglo XX , Historia del Siglo XXI , Investigación/historia , Estados Unidos , United States Department of Agriculture/historia , Medicina Veterinaria/historia , Medicina Veterinaria/tendencias
18.
Arch Virol ; 158(10): 2157-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23612924

RESUMEN

Using metagenomics and molecular cloning methods, we characterized five novel small, circular viral genomes from pig feces that are distantly related to chimpanzee and porcine stool-associated circular viruses, (ChiSCV and PoSCV1). Phylogenetic analysis placed these viruses into a highly divergent clade of this rapidly growing new viral family. This new clade of viruses, provisionally named porcine stool-associated circular virus 2 and 3 (PoSCV2 and PoSCV3), encodes a stem-loop structure (presumably the origin of DNA replication) in the small intergenic region and a replication initiator protein commonly found in other biological systems that replicate their genomes via the rolling-circle mechanism. Furthermore, these viruses also exhibit three additional overlapping open reading frames in the large intergenic region between the capsid and replication initiator protein genes.


Asunto(s)
Virus ADN/genética , Virus ADN/aislamiento & purificación , Heces/virología , Variación Genética , Secuencia de Aminoácidos , Animales , Genoma Viral , Datos de Secuencia Molecular , Filogenia , Porcinos , Enfermedades de los Porcinos/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
19.
PLoS One ; 8(3): e59229, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23527143

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) has devastated pig industries worldwide for many years. It is caused by a small RNA virus (PRRSV), which targets almost exclusively pig monocytes or macrophages. In the present study, five SAGE (serial analysis of gene expression) libraries derived from 0 hour mock-infected and 6, 12, 16 and 24 hours PRRSV-infected porcine alveolar macrophages (PAMs) produced a total 643,255 sequenced tags with 91,807 unique tags. Differentially expressed (DE) tags were then detected using the Bayesian framework followed by gene/mRNA assignment, arbitrary selection and manual annotation, which determined 699 DE genes for reactome analysis. The DAVID, KEGG and REACTOME databases assigned 573 of the DE genes into six biological systems, 60 functional categories and 504 pathways. The six systems are: cellular processes, genetic information processing, environmental information processing, metabolism, organismal systems and human diseases as defined by KEGG with modification. Self-organizing map (SOM) analysis further grouped these 699 DE genes into ten clusters, reflecting their expression trends along these five time points. Based on the number one functional category in each system, cell growth and death, transcription processes, signal transductions, energy metabolism, immune system and infectious diseases formed the major reactomes of PAMs responding to PRRSV infection. Our investigation also focused on dominant pathways that had at least 20 DE genes identified, multi-pathway genes that were involved in 10 or more pathways and exclusively-expressed genes that were included in one system. Overall, our present study reported a large set of DE genes, compiled a comprehensive coverage of pathways, and revealed system-based reactomes of PAMs infected with PRRSV. We believe that our reactome data provides new insight into molecular mechanisms involved in host genetic complexity of antiviral activities against PRRSV and lays a strong foundation for vaccine development to control PRRS incidence in pigs.


Asunto(s)
Etiquetas de Secuencia Expresada , Macrófagos/virología , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Transducción de Señal/genética , Animales , Teorema de Bayes , Línea Celular , Perfilación de la Expresión Génica/veterinaria , Biblioteca de Genes , Humanos , Síndrome Respiratorio y de la Reproducción Porcina/virología , Porcinos , Factores de Tiempo , Vacunas Virales/genética
20.
Photochem Photobiol ; 89(4): 864-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23360345

RESUMEN

Recently, we have proposed that the fluorescence spectra of sheep retina can be well correlated with the presence or absence of scrapie. Scrapie is the most widespread TSE (transmissible spongiform encephalopathy) affecting sheep and goats worldwide. Mice eyes have been previously reported as a model system to study age-related accumulation of lipofuscin, which has been investigated by monitoring the increasing fluorescence with age covering its entire life span. The current work aims at developing mice retina as a convenient model system to diagnose scrapie and other fatal TSE diseases in animals such as sheep and cows. The objective of the research reported here was to determine whether the spectral features are conserved between two different species namely mice and sheep, and whether an appropriate small animal model system could be identified for diagnosis of scrapie based on the fluorescence intensity in retina. The results were consistent with the previous reports on fluorescence studies of healthy and scrapie-infected retina of sheep. The fluorescence from the retinas of scrapie-infected sheep was significantly more intense and showed more heterogeneity than that from the retinas of uninfected mice. Although the structural characteristics of fluorescence spectra of scrapie-infected sheep and mice eyes are slightly different, more importantly, murine retinas reflect the enhancement of fluorescence intensity upon infecting the mice with scrapie, which is consistent with the observations in sheep eyes.


Asunto(s)
Retina/patología , Scrapie/patología , Espectrometría de Fluorescencia , Animales , Femenino , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...