Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 127(39): 19591-19598, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37817917

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is a key method for the determination of molecular structures. Due to its intrinsically high (i.e., atomistic) resolution and versatility, it has found numerous applications for investigating gases, liquids, and solids. However, liquid-state NMR has found little application for suspensions of solid particles as the resonances of such systems are excessively broadened, typically beyond the detection threshold. Herein, we propose a route to overcoming this critical limitation by enhancing the signals of particle suspensions by >3.000-fold using dissolution dynamic nuclear polarization (d-DNP) coupled with rapid solid precipitation. For the proof-of-concept series of experiments, we employed calcium phosphate (CaP) as a model system. By d-DNP, we boosted the signals of phosphate 31P spins before rapid CaP precipitation inside the NMR spectrometer, leading to the inclusion of the hyperpolarized phosphate into CaP-nucleated solid particles within milliseconds. With our approach, within only 1 s of acquisition time, we obtained spectra of biphasic systems, i.e., micrometer-sized dilute solid CaP particles coexisting with their solution-state precursors. Thus, this work is a step toward real-time characterization of the solid-solution equilibrium. Finally, integrating the hyperpolarized data with molecular dynamics simulations and electron microscopy enabled us to shed light on the CaP formation mechanism in atomistic detail.

2.
RSC Adv ; 13(21): 14181-14189, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37180004

RESUMEN

Hydrothermal carbonization (HTC) is an efficient thermochemical method for the conversion of organic feedstock to carbonaceous solids. HTC of different saccharides is known to produce microspheres (MS) with mostly Gaussian size distribution, which are utilized as functional materials in various applications, both as pristine MS and as a precursor for hard carbon MS. Although the average size of the MS can be influenced by adjusting the process parameters, there is no reliable mechanism to affect their size distribution. Our results demonstrate that HTC of trehalose, in contrast to other saccharides, results in a distinctly bimodal sphere diameter distribution consisting of small spheres with diameters of (2.1 ± 0.2) µm and of large spheres with diameters of (10.4 ± 2.6) µm. Remarkably, after pyrolytic post-carbonization at 1000 °C the MS develop a multimodal pore size distribution with abundant macropores > 100 nm, mesopores > 10 nm and micropores < 2 nm, which were examined by small-angle X-ray scattering and visualized by charge-compensated helium ion microscopy. The bimodal size distribution and hierarchical porosity provide an extraordinary set of properties and potential variables for the tailored synthesis of hierarchical porous carbons, making trehalose-derived hard carbon MS a highly promising material for applications in catalysis, filtration, and energy storage devices.

3.
Adv Mater ; 34(40): e2206405, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35977414

RESUMEN

Carbon suboxide (C3 O2 ) is a unique molecule able to polymerize spontaneously into highly conjugated light-absorbing structures at temperatures as low as 0 °C. Despite obvious advantages, little is known about the nature and the functional properties of this carbonaceous material. In this work, the aim is to bring "red carbon," a forgotten polymeric semiconductor, back to the community's attention. A solution polymerization process is adapted to simplify the synthesis and control the structure. This allows one to obtain this crystalline covalent material at low temperatures. Both spectroscopic and elemental analyses support the chemical structure represented as conjugated ladder polypyrone ribbons. Density functional theory calculations suggest a crystalline structure of AB stacks of polypyrone ribbons and identify the material as a direct bandgap semiconductor with a medium bandgap that is further confirmed by optical analysis. The material shows promising photocatalytic performance using blue light. Moreover, the simple condensation-aromatization route described here allows the straightforward fabrication of conjugated ladder polymers and can be inspiring for the synthesis of carbonaceous materials at low temperatures in general.

4.
Phys Chem Chem Phys ; 24(1): 477-487, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34901976

RESUMEN

Treatment of Na+-based hectorite LAPONITE® (LAP) and of Na+-montmorillonite (MMT) with a homologous series of γ-aminopropyl(methyl)x(ethoxy)ysilanes (x + y = 3, y > 0) in toluene was studied by means of thermogravimetric analysis coupled with mass spectrometry, infrared spectroscopy, 29Si and 23Na solid-state nuclear magnetic resonance spectroscopy and powder X-ray diffraction. The triethoxy silane (APTS) exclusively grafts on the clays' edges as branched oligomers whereas both the monoethoxy silane (APMS) and the diethoxy silane (APDS) are also intercalated, the latter as linear oligomers. Intercalation of APMS varies for MMT and LAP: MMT hosts the smallest amounts of the silanes with marginal increase of the basal distance and no stabilization of water. On the contrary, LAP accommodates the largest amount of guests in the form of monomeric APMS which yields the largest increase of the basal distance and stabilizes water up to 200 °C when APMS dimerizes. APMS stabilization is attributed to intramolecular Si-O-H-NH2 hydrogen bonds and the hydrophobic geminal methyl groups together with the trimethylene sides of the cyclic monomers are thought to compartmentalize the hydrated sodium sites. The high temperature release of water from APMS@LAP is discussed in the light of potentially triggered interphase degradation in composite materials for recycling purposes.

5.
Nanomaterials (Basel) ; 10(6)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575861

RESUMEN

Thermally stabilized and subsequently carbonized nanofibers are a promising material for many technical applications in fields such as tissue engineering or energy storage. They can be obtained from a variety of different polymer precursors via electrospinning. While some methods have been tested for post-carbonization doping of nanofibers with the desired ingredients, very little is known about carbonization of blend nanofibers from two or more polymeric precursors. In this paper, we report on the preparation, thermal treatment and resulting properties of poly(acrylonitrile) (PAN)/poly(vinylidene fluoride) (PVDF) blend nanofibers produced by wire-based electrospinning of binary polymer solutions. Using a wide variety of spectroscopic, microscopic and thermal characterization methods, the chemical and morphological transition during oxidative stabilization (280 °C) and incipient carbonization (500 °C) was thoroughly investigated. Both PAN and PVDF precursor polymers were detected and analyzed qualitatively and quantitatively during all stages of thermal treatment. Compared to pure PAN nanofibers, the blend nanofibers showed increased fiber diameters, strong reduction of undesired morphological changes during oxidative stabilization and increased conductivity after carbonization.

6.
Nanomaterials (Basel) ; 9(2)2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759838

RESUMEN

The combined benefits of moisture-stable phosphonic acids and mesoporous silica materials (SBA-15 and MCM-41) as large-surface-area solid supports offer new opportunities for several applications, such as catalysis or drug delivery. We present a comprehensive study of a straightforward synthesis method via direct immobilization of several phosphonic acids and phosphoric acid esters on various mesoporous silicas in a Dean⁻Stark apparatus with toluene as the solvent. Due to the utilization of azeotropic distillation, there was no need to dry phosphonic acids, phosphoric acid esters, solvents, or silicas prior to synthesis. In addition to modeling phosphonic acids, immobilization of the important biomolecule adenosine monophosphate (AMP) on the porous supports was also investigated. Due to the high surface area of the mesoporous silicas, a possible catalytic application based on immobilization of an organocatalyst for an asymmetric aldol reaction is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...