Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(5): 940-956.e10, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36791723

RESUMEN

The pathogenic bacterium Streptococcus pneumoniae (S. pneumoniae) can invade the cerebrospinal fluid (CSF) and cause meningitis with devastating consequences. Whether and how sensory cells in the central nervous system (CNS) become activated during bacterial infection, as recently reported for the peripheral nervous system, is not known. We find that CSF infection by S. pneumoniae in larval zebrafish leads to changes in posture and behavior that are reminiscent of pneumococcal meningitis, including dorsal arching and epileptic-like seizures. We show that during infection, invasion of the CSF by S. pneumoniae massively activates in vivo sensory neurons contacting the CSF, referred to as "CSF-cNs" and previously shown to detect spinal curvature and to control posture, locomotion, and spine morphogenesis. We find that CSF-cNs express orphan bitter taste receptors and respond in vitro to bacterial supernatant and metabolites via massive calcium transients, similar to the ones observed in vivo during infection. Upon infection, CSF-cNs also upregulate the expression of numerous cytokines and complement components involved in innate immunity. Accordingly, we demonstrate, using cell-specific ablation and blockade of neurotransmission, that CSF-cN neurosecretion enhances survival of the host during S. pneumoniae infection. Finally, we show that CSF-cNs respond to various pathogenic bacteria causing meningitis in humans, as well as to the supernatant of cells infected by a neurotropic virus. Altogether, our work uncovers that central sensory neurons in the spinal cord, previously involved in postural control and morphogenesis, contribute as well to host survival by responding to the invasion of the CSF by pathogenic bacteria during meningitis.


Asunto(s)
Infecciones del Sistema Nervioso Central , Streptococcus pneumoniae , Animales , Humanos , Streptococcus pneumoniae/fisiología , Pez Cebra/fisiología , Sistema Nervioso Central , Células Receptoras Sensoriales/fisiología
2.
Bio Protoc ; 11(5): e3932, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33796606

RESUMEN

Circulation of cerebrospinal fluid (CSF) plays an important role during development. In zebrafish embryo, the flow of CSF has been found to be bidirectional in the central canal of the spinal cord. In order to compare conditions and genetic mutants across each other, we recently automated the quantification of the velocity profile of exogenous fluorescent particles in the CSF. We demonstrated that the beating of motile and tilted cilia localized on the ventral side of the central canal was sufficient to generate locally such bidirectionality. Our approach can easily be extended to characterize CSF flow in various genetic mutants. We provide here a detailed protocol and a user interface program to quantify CSF dynamics. In order to interpret potential changes in CSF flow profiles, we provide additional tools to measure the central canal diameter, characterize cilia dynamics and compare experimental data with our theoretical model in order to estimate the impact of cilia in generating a volume force in the central canal. Our approach can also be of use for measuring particle velocity in vivo and modeling flow in diverse biological solutions.

3.
ACS Nano ; 15(1): 944-953, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33348981

RESUMEN

The phenomenon of amyloid polymorphism is a key feature of protein aggregation. Unravelling this phenomenon is of great significance for understanding the underlying molecular mechanisms associated with neurodegenerative diseases and for the development of amyloid-based functional biomaterials. However, the understanding of the molecular origins and the physicochemical factors modulating amyloid polymorphs remains challenging. Herein, we demonstrate an association between amyloid polymorphism and environmental stress in solution, induced by an air/water interface in motion. Our results reveal that low-stress environments produce heterogeneous amyloid polymorphs, including twisted, helical, and rod-like fibrils, whereas high-stress conditions generate only homogeneous rod-like fibrils. Moreover, high environmental stress converts twisted fibrils into rod-like fibrils both in-pathway and after the completion of mature amyloid formation. These results enrich our understanding of the environmental origin of polymorphism of pathological amyloids and shed light on the potential of environmentally controlled fabrication of homogeneous amyloid biomaterials for biotechnological applications.


Asunto(s)
Amiloide , Hidrodinámica , Proteínas Amiloidogénicas , Agua
4.
Elife ; 92020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31916933

RESUMEN

Circulation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth.


Asunto(s)
Líquido Cefalorraquídeo/fisiología , Reología , Médula Espinal/fisiología , Animales , Animales Modificados Genéticamente , Transporte Biológico , Ventrículos Cerebrales/fisiología , Cilios/fisiología , Embrión no Mamífero/fisiología , Desarrollo Embrionario , Proteínas Fluorescentes Verdes/metabolismo , Contracción Muscular/fisiología , Pez Cebra/embriología , Pez Cebra/fisiología
5.
Phys Rev Lett ; 122(7): 074501, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30848625

RESUMEN

We study the sedimentation of highly viscous droplets confined inside Hele-Shaw cells with textured walls of controlled topography. In contrast with common observations on superhydrophobic surfaces, roughness tends here to significantly increase viscous friction, thus substantially decreasing the droplets mobility. However, reducing confinement induces a jump in the velocity as droplets can slide on a lubricating layer of the surrounding fluid thicker than the roughness features. We demonstrate that increasing the viscosity of the surrounding liquid may counterintuitively enhance the mobility of a droplet sliding along a rough wall. Similarly, a sharp change of the droplet mobility is observed as the amplitude of the roughness is modified. These results illustrate the nontrivial friction processes at the scale of the roughness, and the coupling between viscous dissipation in the drop, in the front meniscus, and in the lubricating film. They could enable one to specifically control the speed of droplets or capsules in microchannels, based on their rheological properties.

6.
Soft Matter ; 13(39): 6981-6987, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28933489

RESUMEN

We discuss in this paper the nature of the friction generated as a drop glides on a textured material infused by another liquid. Different regimes are found, depending on the viscosities of both liquids. While a viscous drop simply obeys a Stokes-type friction, the force opposing a drop moving on a viscous substrate becomes non-linear in velocity. A liquid on an infused material is surrounded by a meniscus, and this specific feature is proposed to be responsible for the special frictions observed on both adhesive and non-adhesive substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...