Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 7: 11218, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27075230

RESUMEN

The Hamiltonian of a closed quantum system governs its complete time evolution. While Hamiltonians with time-variation in a single basis can be recovered using a variety of methods, for more general Hamiltonians the presence of non-commuting terms complicates the reconstruction. Here using a single trapped ion, we propose and experimentally demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. We measure the time evolution of the qubit in a fixed basis as a function of a time-independent offset term added to the Hamiltonian. The initially unknown Hamiltonian arises from transporting an ion through a static laser beam. Hamiltonian estimation allows us to estimate the spatial beam intensity profile and the ion velocity as a function of time. The estimation technique is general enough that it can be applied to other quantum systems, aiding the pursuit of high-operational fidelities in quantum control.

2.
Nat Commun ; 7: 11243, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27046513

RESUMEN

Fast control of quantum systems is essential to make use of quantum properties before they degrade by decoherence. This is important for quantum-enhanced information processing, as well as for pushing quantum systems towards the boundary between quantum and classical physics. 'Bang-bang' control attains the ultimate speed limit by making large changes to control fields much faster than the system can respond, but is often challenging to implement experimentally. Here we demonstrate bang-bang control of a trapped-ion oscillator using nanosecond switching of the trapping potentials. We perform controlled displacements with which we realize coherent states with up to 10,000 quanta of energy. We use these displaced states to verify the form of the ion-light interaction at high excitations far outside the usual regime of operation. These methods provide new possibilities for quantum-state manipulation and generation, alongside the potential for a significant increase in operational clock speed for trapped-ion quantum information processing.

3.
Rev Sci Instrum ; 86(3): 033107, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25832211

RESUMEN

We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron scale with high optical access. We demonstrate the basic functionality of the trap by cooling a single ion to the quantum ground state, allowing us to measure a heating rate from the ground state of 787 ± 24 quanta/s. Variation of the fabrication procedure used here may provide access to traps in this geometry with trap scales between 100 µm and 10 µm.

4.
Science ; 347(6217): 53-6, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25525161

RESUMEN

The robust generation of quantum states in the presence of decoherence is a primary challenge for explorations of quantum mechanics at larger scales. Using the mechanical motion of a single trapped ion, we utilize reservoir engineering to generate squeezed, coherent, and displaced-squeezed states as steady states in the presence of noise. We verify the created state by generating two-state correlated spin-motion Rabi oscillations, resulting in high-contrast measurements. For both cooling and measurement, we use spin-oscillator couplings that provide transitions between oscillator states in an engineered Fock state basis. Our approach should facilitate studies of entanglement, quantum computation, and open-system quantum simulations in a wide range of physical systems.

5.
Opt Lett ; 38(6): 830-2, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23503230

RESUMEN

Two cw single-mode violet (397 nm) diode lasers are locked to a single external-cavity master diode laser by optical injection locking. A double-pass 1.6 GHz acousto-optic modulator is used to provide a 3.2 GHz offset frequency between the two slave lasers. We achieve up to 20 mW usable output in each slave beam, with as little as 25 µW of injection power at room temperature. An optical heterodyne measurement of the beat note between the two slave beams gives a linewidth of ≤10 Hz at 3.2 GHz. We also estimate the free-running linewidth of the master laser to be approximately 3 MHz by optical heterodyning with a similar device.

6.
Phys Rev Lett ; 98(6): 063603, 2007 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-17358940

RESUMEN

We create entangled states of the spin and motion of a single 40Ca+ ion in a linear ion trap. We theoretically study and experimentally observe the behavior outside the Lamb-Dicke regime, where the trajectory in phase space is modified and the motional coherent states become squeezed. We directly observe the modification of the return time of the trajectory, and infer the squeezing. The mesoscopic entanglement is observed up to Deltaalpha=5.1 with coherence time 170 micros and mean phonon excitation n = 16.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA