Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 38(12): 1177-1188, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37661519

RESUMEN

We explore how integrating behavioural ecology and macroecology can provide fundamental new insight into both fields, with particular relevance for understanding ecological responses to rapid environmental change. We outline the field of macrobehaviour, which aims to unite these disciplines explicitly, and highlight examples of research in this space. Macrobehaviour can be envisaged as a spectrum, where behavioural ecologists and macroecologists use new data and borrow tools and approaches from one another. At the heart of this spectrum, interdisciplinary research considers how selection in the context of large-scale factors can lead to systematic patterns in behavioural variation across space, time, and taxa, and in turn, influence macroecological patterns and processes. Macrobehaviour has the potential to enhance forecasts of future biodiversity change.


Asunto(s)
Biodiversidad , Ecología , Predicción , Ecosistema
2.
Nat Ecol Evol ; 7(1): 82-91, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604551

RESUMEN

Human-induced environmental changes, such as the introduction of invasive species, are driving declines in the movement of nutrients across ecosystems with negative consequences for ecosystem function. Declines in nutrient inputs could thus have knock-on effects at higher trophic levels and broader ecological scales, yet these interconnections remain relatively unknown. Here we show that a terrestrial invasive species (black rats, Rattus rattus) disrupts a nutrient pathway provided by seabirds, ultimately altering the territorial behaviour of coral reef fish. In a replicated ecosystem-scale natural experiment, we found that reef fish territories were larger and the time invested in aggression lower on reefs adjacent to rat-infested islands compared with rat-free islands. This response reflected changes in the economic defendability of lower-quality resources, with reef fish obtaining less nutritional gain per unit foraging effort adjacent to rat-infested islands with low seabird populations. These results provide a novel insight into how the disruption of nutrient flows by invasive species can affect variation in territorial behaviour. Rat eradication as a conservation strategy therefore has the potential to restore species interactions via territoriality, which can scale up to influence populations and communities at higher ecological levels.


Asunto(s)
Ecosistema , Especies Introducidas , Humanos , Animales , Ratas , Arrecifes de Coral , Peces/fisiología , Agresión
3.
J Anim Ecol ; 91(10): 2125-2134, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35974677

RESUMEN

The direct and indirect effects of climate change can affect, and are mediated by, changes in animal behaviour. However, we often lack sufficient empirical data to assess how large-scale disturbances affect the behaviour of individuals, which scales up to influence communities. Here, we investigate these patterns by focusing on the foraging behaviour of butterflyfishes, prominent coral-feeding fishes on coral reefs, before and after a mass coral bleaching event in Iriomote, Japan. In response to 65% coral mortality, coral-feeding fishes broadened their diets, showing a significant weakening of dietary preferences across species. Multiple species reduced their consumption of bleaching-sensitive Acropora corals, while expanding their diets to consume a variety of other coral genera. This resulted in decreased dietary overlap among butterflyfishes. Behavioural changes in response to bleaching may increase resilience of coral reef fishes in the short term. However, coral mortality has reduced populations of coral-feeders world-wide, indicating the changes in feeding behaviour we document here may not be sufficient to ensure long-term resilience of butterflyfishes on coral reefs.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Cambio Climático , Arrecifes de Coral , Dieta/veterinaria , Peces/fisiología
4.
Nat Ecol Evol ; 6(9): 1262-1270, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35798839

RESUMEN

The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Cambio Climático , Humanos
5.
Ecol Evol ; 11(9): 4898-4908, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976857

RESUMEN

Efforts to understand and protect ecosystem functioning have put considerable emphasis on classifying species according to the functions they perform. However, coarse classifications based on diet or feeding mode often oversimplify species' contributions to ecological processes. Behavioral variation among superficially similar species is easily missed but could indicate important differences in competitive interactions and the spatial scale at which species deliver their functions. To test the extent to which behavior can vary within existing functional classifications, we investigate the diversity of foraging movements in three herbivorous coral reef fishes across two functional groups. We find significant variation in foraging movements and spatial scales of operation between species, both within and across existing functional groups. Specifically, we show that movements and space use range from low frequency foraging bouts separated by short distances and tight turns across a small area, to high frequency, far-ranging forays separated by wide sweeping turns. Overall, we add to the burgeoning evidence that nuanced behavioral differences can underpin considerable complementarity within existing functional classifications, and that species assemblages may be considerably less redundant than previously thought.

6.
Proc Biol Sci ; 288(1949): 20202718, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33878919

RESUMEN

A key goal of conservation is to protect biodiversity by supporting the long-term persistence of viable, natural populations of wild species. Conservation practice has long been guided by genetic, ecological and demographic indicators of risk. Emerging evidence of animal culture across diverse taxa and its role as a driver of evolutionary diversification, population structure and demographic processes may be essential for augmenting these conventional conservation approaches and decision-making. Animal culture was the focus of a ground-breaking resolution under the Convention on the Conservation of Migratory Species of Wild Animals (CMS), an international treaty operating under the UN Environment Programme. Here, we synthesize existing evidence to demonstrate how social learning and animal culture interact with processes important to conservation management. Specifically, we explore how social learning might influence population viability and be an important resource in response to anthropogenic change, and provide examples of how it can result in phenotypically distinct units with different, socially learnt behavioural strategies. While identifying culture and social learning can be challenging, indirect identification and parsimonious inferences may be informative. Finally, we identify relevant methodologies and provide a framework for viewing behavioural data through a cultural lens which might provide new insights for conservation management.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Animales Salvajes , Evolución Biológica , Aprendizaje
7.
Nat Commun ; 12(1): 1198, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608528

RESUMEN

Understanding how species' thermal limits have evolved across the tree of life is central to predicting species' responses to climate change. Here, using experimentally-derived estimates of thermal tolerance limits for over 2000 terrestrial and aquatic species, we show that most of the variation in thermal tolerance can be attributed to a combination of adaptation to current climatic extremes, and the existence of evolutionary 'attractors' that reflect either boundaries or optima in thermal tolerance limits. Our results also reveal deep-time climate legacies in ectotherms, whereby orders that originated in cold paleoclimates have presently lower cold tolerance limits than those with warm thermal ancestry. Conversely, heat tolerance appears unrelated to climate ancestry. Cold tolerance has evolved more quickly than heat tolerance in endotherms and ectotherms. If the past tempo of evolution for upper thermal limits continues, adaptive responses in thermal limits will have limited potential to rescue the large majority of species given the unprecedented rate of contemporary climate change.


Asunto(s)
Evolución Biológica , Fenómenos Fisiológicos de las Plantas , Termotolerancia/fisiología , Adaptación Fisiológica , Animales , Clima , Cambio Climático , Planeta Tierra , Ecología , Calor , Temperatura
8.
Biol Lett ; 15(10): 20190493, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31662067

RESUMEN

Natural environmental gradients encompass systematic variation in abiotic factors that can be exploited to test competing explanations of biodiversity patterns. The species-energy (SE) hypothesis attempts to explain species richness gradients as a function of energy availability. However, limited empirical support for SE is often attributed to idiosyncratic, local-scale processes distorting the underlying SE relationship. Meanwhile, studies are also often confounded by factors such as sampling biases, dispersal boundaries and unclear definitions of energy availability. Here, we used spatially structured observations of 8460 colonies of photo-symbiotic reef-building corals and a null-model to test whether energy can explain observed coral species richness over depth. Species richness was left-skewed, hump-shaped and unrelated to energy availability. While local-scale processes were evident, their influence on species richness was insufficient to reconcile observations with model predictions. Therefore, energy availability, either in isolation or in combination with local deterministic processes, was unable to explain coral species richness across depth. Our results demonstrate that local-scale processes do not necessarily explain deviations in species richness from theoretical models, and that the use of idiosyncratic small-scale factors to explain large-scale ecological patterns requires the utmost caution.


Asunto(s)
Antozoos , Animales , Biodiversidad , Ecología , Modelos Biológicos
9.
J Fish Biol ; 95(4): 1125-1136, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31355448

RESUMEN

In this study, the inverted trophic hypothesis was tested in the freshwater fish communities of a reservoir. The distribution of fish species in three freshwater habitats in the Jurumirim Reservoir, Brazil, was examined using both species richness and the relative proportions of different trophic groups. These groups were used as a proxy for functional structure in an attempt to test the ability of these measures to assess fish diversity. Assemblage structures were first described using non-metric multidimensional scaling (NMDS). The influence of environmental conditions for multiple fish assemblage response variables (richness, total abundance and abundance per trophic group) was tested using generalised linear mixed models (GLMM). The metric typically employed to describe diversity; that is, species richness, was not related to environmental conditions. However, absolute species abundance was relatively well explained with up to 54% of the variation in the observed data accounted for. Differences in the dominance of trophic groups were most apparent in response to the presence of introduced fish species: the iliophagous and piscivorous trophic groups were positively associated, while detritivores and herbivores were negatively associated, with the alien species. This suggests that monitoring functional diversity might be more valuable than species diversity for assessing effects of disturbances and managements policies on the fish community.


Asunto(s)
Biodiversidad , Peces/fisiología , Agua Dulce , Animales , Brasil , Peces/clasificación , Especies Introducidas
13.
Trends Ecol Evol ; 32(11): 835-844, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28919203

RESUMEN

Macroecology has traditionally relied on descriptive characterization of large-scale ecological patterns to offer narrative explanations for the origin and maintenance of those patterns. Only recently have macroecologists begun to employ models termed 'process-based' and 'mechanistic', in contrast to other areas of ecology, where such models have a longer history. Here, we define and differentiate between process-based and mechanistic features of models, and we identify and discuss important advantages of working with models possessing such features. We describe some of the risks associated with process-based and mechanistic model-centered research programs, and we propose ways to mitigate these risks. Giving process-based and mechanistic models a more central role in research programs can reinvigorate macroecology by strengthening the link between theory and data.


Asunto(s)
Ecología/métodos , Modelos Teóricos , Geografía
14.
F1000Res ; 6: 1728, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29707194

RESUMEN

Coral bleaching can be induced by many different stressors, however, the most common cause of mass bleaching in the field is higher than average sea surface temperatures (SST). Here, we describe an unusual bleaching event that followed very calm sea conditions combined with higher than average SST. Patterns of mortality differed from typical bleaching in four ways: 1) mortality was very rapid; 2) a different suite of species were most affected; 3) tissue mortality in Acropora spp. was often restricted to the center of the colony; 4) the event occurred early in summer. The two weeks prior to the event included 8 days where the average wind speed was less than 3 ms -1. In addition, SSTs in the weeks preceding and during the event were 1.0-1.5°C higher than the mean for the last 30 years. We hypothesize that this unusual bleaching event was caused by anoxia resulting from a lack of water movement induced by low wind speeds combined with high SST.

15.
Proc Biol Sci ; 283(1830)2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170709

RESUMEN

Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R(2) = 0.73, peak: R(2) = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.


Asunto(s)
Antozoos/fisiología , Animales , Arrecifes de Coral , Océano Índico , Océano Pacífico , Fotosíntesis , Lluvia , Reproducción , Estaciones del Año , Análisis Espacio-Temporal , Luz Solar , Temperatura , Viento
16.
Trends Ecol Evol ; 31(6): 419-428, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26969335

RESUMEN

Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems.


Asunto(s)
Arrecifes de Coral , Ecosistema , Animales , Antozoos , Ecología , Fenotipo
17.
Sci Data ; 3: 160017, 2016 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-27023900

RESUMEN

Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism's function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.


Asunto(s)
Antozoos , Bases de Datos Factuales , Animales , Arrecifes de Coral , Ecosistema , Océanos y Mares , Filogenia
18.
Trends Ecol Evol ; 31(3): 204-214, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26852171

RESUMEN

Dispersal is one of the key processes in shaping distributional ranges and community assemblages, but we know little about animal dispersal at the individual, population, or community levels, or about how dispersal correlates with the establishment and colonization of new areas. This is largely due to difficulties in studying individual movements at the relevant spatiotemporal scale, leading to a gap between the direct study of dispersal and our understanding of the build-up of larger-scale biodiversity. Recent advances in tracking technology make it possible to bridge this gap. We propose a way to link movement, dispersal, ecology, and biogeography. In particular, we offer a framework to scale-up from processes at the individual level to global patterns of biodiversity.


Asunto(s)
Distribución Animal , Biodiversidad , Modelos Biológicos , Animales , Movimiento
19.
Biol Lett ; 8(6): 904-6, 2012 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22915630

RESUMEN

The symposium 'What is Macroecology?' was held in London on 20 June 2012. The event was the inaugural meeting of the Macroecology Special Interest Group of the British Ecological Society and was attended by nearly 100 scientists from 11 countries. The meeting reviewed the recent development of the macroecological agenda. The key themes that emerged were a shift towards more explicit modelling of ecological processes, a growing synthesis across systems and scales, and new opportunities to apply macroecological concepts in other research fields.


Asunto(s)
Ecología/métodos , Ecología/tendencias , Ecosistema , Modelos Biológicos , Geografía , Factores de Tiempo
20.
Proc Biol Sci ; 276(1672): 3539-44, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19625318

RESUMEN

Taxonomic homogenization (TH) is the increasing similarity of the species composition of ecological communities over time. Such homogenization represents a form of biodiversity loss and can result from local species turnover. Evidence for TH is limited, reflecting a lack of suitable historical datasets, and previous analyses have generated contrasting conclusions. We present an analysis of woodland patches across a southern English county (Dorset) in which we quantified 70 years of change in the composition of vascular plant communities. We tested the hypotheses that over this time patches decreased in species richness, homogenized, or shifted towards novel communities. Although mean species richness at the patch scale did not change, we found increased similarity in species composition among woodlands over time. We concluded that the woodlands have undergone TH without experiencing declines in local diversity or shifts towards novel communities. Analysis of species characteristics suggested that these changes were not driven by non-native species invasions or climate change, but instead reflected reorganization of the native plant communities in response to eutrophication and increasingly shaded conditions. These analyses provide, to our knowledge, the first direct evidence of TH in the UK and highlight the potential importance of this phenomenon as a contributor to biodiversity loss.


Asunto(s)
Ecosistema , Plantas/clasificación , Inglaterra , Dinámica Poblacional , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...