Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490435

RESUMEN

Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader replication factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the Escherichia coli clamp loader at high resolution using cryo-electron microscopy. We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how the clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.


Asunto(s)
Replicación del ADN , Escherichia coli , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Conformación Proteica , Proteína de Replicación C/metabolismo , Proteína de Replicación C/química , Proteína de Replicación C/genética , Modelos Moleculares , Estructura Cuaternaria de Proteína
2.
bioRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076975

RESUMEN

Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp, and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader Replication Factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the E. coli clamp loader at high resolution using cryo-electron microscopy (cryo-EM). We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.

3.
J Biol Chem ; 299(5): 104656, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990216

RESUMEN

Proliferating cell nuclear antigen (PCNA) is a sliding clamp protein that coordinates DNA replication with various DNA maintenance events that are critical for human health. Recently, a hypomorphic homozygous serine to isoleucine (S228I) substitution in PCNA was described to underlie a rare DNA repair disorder known as PCNA-associated DNA repair disorder (PARD). PARD symptoms range from UV sensitivity, neurodegeneration, telangiectasia, and premature aging. We, and others, previously showed that the S228I variant changes the protein-binding pocket of PCNA to a conformation that impairs interactions with specific partners. Here, we report a second PCNA substitution (C148S) that also causes PARD. Unlike PCNA-S228I, PCNA-C148S has WT-like structure and affinity toward partners. In contrast, both disease-associated variants possess a thermostability defect. Furthermore, patient-derived cells homozygous for the C148S allele exhibit low levels of chromatin-bound PCNA and display temperature-dependent phenotypes. The stability defect of both PARD variants indicates that PCNA levels are likely an important driver of PARD disease. These results significantly advance our understanding of PARD and will likely stimulate additional work focused on clinical, diagnostic, and therapeutic aspects of this severe disease.


Asunto(s)
Alelos , Ataxia Telangiectasia , Reparación del ADN , Antígeno Nuclear de Célula en Proliferación , Temperatura , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Reparación del ADN/genética , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica/genética , Estabilidad Proteica , Cromatina/genética , Cromatina/metabolismo , Especificidad por Sustrato
4.
J Biol Chem ; 299(3): 103021, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791911

RESUMEN

Tail tube assembly is an essential step in the lifecycle of long-tailed bacteriophages. Limited structural and biophysical information has impeded an understanding of assembly and stability of their long, flexible tail tubes. The hyperthermophilic phage P74-26 is particularly intriguing as it has the longest tail of any known virus (nearly 1 µm) and is the most thermostable known phage. Here, we use structures of the P74-26 tail tube along with an in vitro system for studying tube assembly kinetics to propose the first molecular model for the tail tube assembly of long-tailed phages. Our high-resolution cryo-EM structure provides insight into how the P74-26 phage assembles through flexible loops that fit into neighboring rings through tight "ball-and-socket"-like interactions. Guided by this structure, and in combination with mutational, light scattering, and molecular dynamics simulations data, we propose a model for the assembly of conserved tube-like structures across phage and other entities possessing tail tube-like proteins. We propose that formation of a full ring promotes the adoption of a tube elongation-competent conformation among the flexible loops and their corresponding sockets, which is further stabilized by an adjacent ring. Tail assembly is controlled by the cooperative interaction of dynamic intraring and interring contacts. Given the structural conservation among tail tube proteins and tail-like structures, our model can explain the mechanism of high-fidelity assembly of long, stable tubes.


Asunto(s)
Bacteriófagos , Caudovirales , Bacteriófagos/metabolismo , Caudovirales/metabolismo , Conformación Molecular , Modelos Moleculares , Proteínas de la Cola de los Virus/química
5.
Cell Rep ; 40(2): 111064, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35830796

RESUMEN

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a signaling protein required for long-term memory. When activated by Ca2+/CaM, it sustains activity even after the Ca2+ dissipates. In addition to the well-known autophosphorylation-mediated mechanism, interaction with specific binding partners also persistently activates CaMKII. A long-standing model invokes two distinct S and T sites. If an interactor binds at the T-site, then it will preclude autoinhibition and allow substrates to be phosphorylated at the S site. Here, we specifically test this model with X-ray crystallography, molecular dynamics simulations, and biochemistry. Our data are inconsistent with this model. Co-crystal structures of four different activators or substrates show that they all bind to a single continuous site across the kinase domain. We propose a mechanistic model where persistent CaMKII activity is facilitated by high-affinity binding partners that kinetically compete with autoinhibition by the regulatory segment to allow substrate phosphorylation.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Procesamiento Proteico-Postraduccional , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Dominio Catalítico , Fosforilación
6.
Elife ; 112022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35731107

RESUMEN

Clamp loaders place circular sliding clamp proteins onto DNA so that clamp-binding partner proteins can synthesize, scan, and repair the genome. DNA with nicks or small single-stranded gaps are common clamp-loading targets in DNA repair, yet these substrates would be sterically blocked given the known mechanism for binding of primer-template DNA. Here, we report the discovery of a second DNA binding site in the yeast clamp loader replication factor C (RFC) that aids in binding to nicked or gapped DNA. This DNA binding site is on the external surface and is only accessible in the open conformation of RFC. Initial DNA binding at this site thus provides access to the primary DNA binding site in the central chamber. Furthermore, we identify that this site can partially unwind DNA to create an extended single-stranded gap for DNA binding in RFC's central chamber and subsequent ATPase activation. Finally, we show that deletion of the BRCT domain, a major component of the external DNA binding site, results in defective yeast growth in the presence of DNA damage where nicked or gapped DNA intermediates occur. We propose that RFC's external DNA binding site acts to enhance DNA binding and clamp loading, particularly at DNA architectures typically found in DNA repair.


Asunto(s)
Adenosina Trifosfato , Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , Sitios de Unión , ADN/metabolismo , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Elife ; 112022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179493

RESUMEN

Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the Saccharomyces cerevisiae clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.


Asunto(s)
Replicación del ADN , Saccharomyces cerevisiae , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/genética
8.
Nucleic Acids Res ; 49(11): 6474-6488, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34050764

RESUMEN

Double-stranded DNA viruses package their genomes into pre-assembled capsids using virally-encoded ASCE ATPase ring motors. We present the first atomic-resolution crystal structure of a multimeric ring form of a viral dsDNA packaging motor, the ATPase of the asccφ28 phage, and characterize its atomic-level dynamics via long timescale molecular dynamics simulations. Based on these results, and previous single-molecule data and cryo-EM reconstruction of the homologous φ29 motor, we propose an overall packaging model that is driven by helical-to-planar transitions of the ring motor. These transitions are coordinated by inter-subunit interactions that regulate catalytic and force-generating events. Stepwise ATP binding to individual subunits increase their affinity for the helical DNA phosphate backbone, resulting in distortion away from the planar ring towards a helical configuration, inducing mechanical strain. Subsequent sequential hydrolysis events alleviate the accumulated mechanical strain, allowing a stepwise return of the motor to the planar conformation, translocating DNA in the process. This type of helical-to-planar mechanism could serve as a general framework for ring ATPases.


Asunto(s)
Adenosina Trifosfatasas/química , Empaquetamiento del Genoma Viral , Proteínas Virales/química , Adenosina/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Arginina/química , Fagos de Bacillus/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Fosfatos/química , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Proteínas Virales/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33888587

RESUMEN

Many viruses utilize ringed packaging ATPases to translocate double-stranded DNA into procapsids during replication. A critical step in the mechanochemical cycle of such ATPases is ATP binding, which causes a subunit within the motor to grip DNA tightly. Here, we probe the underlying molecular mechanism by which ATP binding is coupled to DNA gripping and show that a glutamate-switch residue found in AAA+ enzymes is central to this coupling in viral packaging ATPases. Using free-energy landscapes computed through molecular dynamics simulations, we determined the stable conformational state of the ATPase active site in ATP- and ADP-bound states. Our results show that the catalytic glutamate residue transitions from an active to an inactive pose upon ATP hydrolysis and that a residue assigned as the glutamate switch is necessary for regulating this transition. Furthermore, we identified via mutual information analyses the intramolecular signaling pathway mediated by the glutamate switch that is responsible for coupling ATP binding to conformational transitions of DNA-gripping motifs. We corroborated these predictions with both structural and functional experimental measurements. Specifically, we showed that the crystal structure of the ADP-bound P74-26 packaging ATPase is consistent with the structural coupling predicted from simulations, and we further showed that disrupting the predicted signaling pathway indeed decouples ATPase activity from DNA translocation activity in the φ29 DNA packaging motor. Our work thus establishes a signaling pathway that couples chemical and mechanical events in viral DNA packaging motors.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ácido Glutámico/metabolismo , Simulación de Dinámica Molecular , Empaquetamiento del Genoma Viral , Transducción de Señal
10.
Mol Cancer Res ; 19(6): 1015-1025, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33619228

RESUMEN

FANCJ (BRIP1/BACH1) is a hereditary breast and ovarian cancer (HBOC) gene encoding a DNA helicase. Similar to HBOC genes, BRCA1 and BRCA2, FANCJ is critical for processing DNA inter-strand crosslinks (ICL) induced by chemotherapeutics, such as cisplatin. Consequently, cells deficient in FANCJ or its catalytic activity are sensitive to ICL-inducing agents. Unfortunately, the majority of FANCJ clinical mutations remain uncharacterized, limiting therapeutic opportunities to effectively use cisplatin to treat tumors with mutated FANCJ. Here, we sought to perform a comprehensive screen to identify FANCJ loss-of-function (LOF) mutations. We developed a FANCJ lentivirus mutation library representing approximately 450 patient-derived FANCJ nonsense and missense mutations to introduce FANCJ mutants into FANCJ knockout (K/O) HeLa cells. We performed a high-throughput screen to identify FANCJ LOF mutants that, as compared with wild-type FANCJ, fail to robustly restore resistance to ICL-inducing agents, cisplatin or mitomycin C (MMC). On the basis of the failure to confer resistance to either cisplatin or MMC, we identified 26 missense and 25 nonsense LOF mutations. Nonsense mutations elucidated a relationship between location of truncation and ICL sensitivity, as the majority of nonsense mutations before amino acid 860 confer ICL sensitivity. Further validation of a subset of LOF mutations confirmed the ability of the screen to identify FANCJ mutations unable to confer ICL resistance. Finally, mapping the location of LOF mutations to a new homology model provides additional functional information. IMPLICATIONS: We identify 51 FANCJ LOF mutations, providing important classification of FANCJ mutations that will afford additional therapeutic strategies for affected patients.


Asunto(s)
Proteína BRCA1/genética , ADN Helicasas/genética , Análisis Mutacional de ADN/métodos , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Mutación/genética , Neoplasias/genética , ARN Helicasas/genética , Línea Celular Tumoral , Cisplatino/farmacología , Codón sin Sentido , Reactivos de Enlaces Cruzados/farmacología , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Mutación con Pérdida de Función , Mitomicina/farmacología , Mutación/efectos de los fármacos , Mutación Missense , Neoplasias/patología
11.
Biochemistry ; 60(3): 170-181, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33433210

RESUMEN

In addition to encoding the tertiary fold and stability, the primary sequence of a protein encodes the folding trajectory and kinetic barriers that determine the speed of folding. How these kinetic barriers are encoded is not well understood. Here, we use evolutionary sequence variation in the α-lytic protease (αLP) protein family to probe the relationship between sequence and energy landscape. αLP has an unusual energy landscape: the native state of αLP is not the most thermodynamically favored conformation and, instead, remains folded due to a large kinetic barrier preventing unfolding. To fold, αLP utilizes an N-terminal pro region similar in size to the protease itself that functions as a folding catalyst. Once folded, the pro region is removed, and the native state does not unfold on a biologically relevant time scale. Without the pro region, αLP folds on the order of millennia. A phylogenetic search uncovers αLP homologs with a wide range of pro region sizes, including some with no pro region at all. In the resulting phylogenetic tree, these homologs cluster by pro region size. By studying homologs naturally lacking a pro region, we demonstrate they can be thermodynamically stable, fold much faster than αLP, yet retain the same fold as αLP. Key amino acids thought to contribute to αLP's extreme kinetic stability are lost in these homologs, supporting their role in kinetic stability. This study highlights how the entire energy landscape plays an important role in determining the evolutionary pressures on the protein sequence.


Asunto(s)
Proteínas Bacterianas/química , Evolución Molecular , Modelos Moleculares , Filogenia , Pliegue de Proteína , Serina Endopeptidasas/química , Proteínas Bacterianas/genética , Estabilidad de Enzimas , Cinética , Serina Endopeptidasas/genética
12.
Proc Natl Acad Sci U S A ; 117(38): 23571-23580, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32907938

RESUMEN

DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader replication factor C (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryogenic electron microscopy to an overall resolution of ∼3.4 Å. The active sites of RFC are fully bound to adenosine 5'-triphosphate (ATP) analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation before PCNA opening, with the clamp loader ATPase modules forming an overtwisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a "limited change/induced fit" mechanism in which the clamp first opens, followed by DNA binding, inducing opening of the loader to release autoinhibition. The proposed change from an overtwisted to an active conformation reveals an additional regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Replicación del ADN/fisiología , Antígeno Nuclear de Célula en Proliferación , Proteína de Replicación C , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Humanos , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/ultraestructura , Proteína de Replicación C/química , Proteína de Replicación C/metabolismo , Proteína de Replicación C/ultraestructura
13.
J Biol Chem ; 295(12): 3783-3793, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32014998

RESUMEN

Tailed bacteriophages use a DNA-packaging motor to encapsulate their genome during viral particle assembly. The small terminase (TerS) component of this DNA-packaging machinery acts as a molecular matchmaker that recognizes both the viral genome and the main motor component, the large terminase (TerL). However, how TerS binds DNA and the TerL protein remains unclear. Here we identified gp83 of the thermophilic bacteriophage P74-26 as the TerS protein. We found that TerSP76-26 oligomerizes into a nonamer that binds DNA, stimulates TerL ATPase activity, and inhibits TerL nuclease activity. A cryo-EM structure of TerSP76-26 revealed that it forms a ring with a wide central pore and radially arrayed helix-turn-helix domains. The structure further showed that these helix-turn-helix domains, which are thought to bind DNA by wrapping the double helix around the ring, are rigidly held in an orientation distinct from that seen in other TerS proteins. This rigid arrangement of the putative DNA-binding domain imposed strong constraints on how TerSP76-26 can bind DNA. Finally, the TerSP76-26 structure lacked the conserved C-terminal ß-barrel domain used by other TerS proteins for binding TerL. This suggests that a well-ordered C-terminal ß-barrel domain is not required for TerSP76-26 to carry out its matchmaking function. Our work highlights a thermophilic system for studying the role of small terminase proteins in viral maturation and presents the structure of TerSP76-26, revealing key differences between this thermophilic phage and its mesophilic counterparts.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Bacteriófagos/metabolismo , Endodesoxirribonucleasas/metabolismo , Ensamble de Virus/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Microscopía por Crioelectrón , ADN Viral/química , ADN Viral/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Simulación de Dinámica Molecular , Mutagénesis , Unión Proteica , Conformación Proteica en Hélice alfa , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Electricidad Estática
14.
Nat Commun ; 10(1): 4471, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578335

RESUMEN

The capsids of double-stranded DNA viruses protect the viral genome from the harsh extracellular environment, while maintaining stability against the high internal pressure of packaged DNA. To elucidate how capsids maintain stability in an extreme environment, we use cryoelectron microscopy to determine the capsid structure of thermostable phage P74-26 to 2.8-Å resolution. We find P74-26 capsids exhibit an overall architecture very similar to those of other tailed bacteriophages, allowing us to directly compare structures to derive the structural basis for enhanced stability. Our structure reveals lasso-like interactions that appear to function like catch bonds. This architecture allows the capsid to expand during genome packaging, yet maintain structural stability. The P74-26 capsid has T = 7 geometry despite being twice as large as mesophilic homologs. Capsid capacity is increased with a larger, flatter major capsid protein. Given these results, we predict decreased icosahedral complexity (i.e. T ≤ 7) leads to a more stable capsid assembly.


Asunto(s)
Bacteriófagos/genética , Proteínas de la Cápside/genética , Cápside/metabolismo , Genoma Viral/genética , Inestabilidad Genómica/genética , Virión/genética , Bacteriófagos/metabolismo , Bacteriófagos/ultraestructura , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , ADN Viral/química , ADN Viral/genética , ADN Viral/ultraestructura , Calor , Modelos Moleculares , Thermus thermophilus/virología , Virión/química , Virión/ultraestructura , Ensamble de Virus/genética
15.
Nucleic Acids Res ; 47(13): 6826-6841, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31114918

RESUMEN

Proliferating cell nuclear antigen (PCNA) is a sliding clamp that acts as a central co-ordinator for mismatch repair (MMR) as well as DNA replication. Loss of Elg1, the major subunit of the PCNA unloader complex, causes over-accumulation of PCNA on DNA and also increases mutation rate, but it has been unclear if the two effects are linked. Here we show that timely removal of PCNA from DNA by the Elg1 complex is important to prevent mutations. Although premature unloading of PCNA generally increases mutation rate, the mutator phenotype of elg1Δ is attenuated by PCNA mutants PCNA-R14E and PCNA-D150E that spontaneously fall off DNA. In contrast, the elg1Δ mutator phenotype is exacerbated by PCNA mutants that accumulate on DNA due to enhanced electrostatic PCNA-DNA interactions. Epistasis analysis suggests that PCNA over-accumulation on DNA interferes with both MMR and MMR-independent process(es). In elg1Δ, over-retained PCNA hyper-recruits the Msh2-Msh6 mismatch recognition complex through its PCNA-interacting peptide motif, causing accumulation of MMR intermediates. Our results suggest that PCNA retention controlled by the Elg1 complex is critical for efficient MMR: PCNA needs to be on DNA long enough to enable MMR, but if it is retained too long it interferes with downstream repair steps.


Asunto(s)
Proteínas Portadoras/fisiología , Reparación de la Incompatibilidad de ADN , ADN de Hongos/metabolismo , Mutación , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Proteínas Portadoras/genética , Cristalografía por Rayos X , Replicación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/metabolismo , Edición Génica , Genes Fúngicos , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS/metabolismo , Conformación de Ácido Nucleico , Mutación Puntual , Antígeno Nuclear de Célula en Proliferación/fisiología , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación
16.
Structure ; 26(7): 936-947.e3, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29779790

RESUMEN

Virus capsids are protein shells that protect the viral genome from environmental assaults, while maintaining the high internal pressure of the tightly packaged genome. To elucidate how capsids maintain stability under harsh conditions, we investigated the capsid components of the hyperthermophilic phage P74-26. We determined the structure of capsid protein gp87 and show that it has the same fold as decoration proteins in many other phages, despite lacking significant sequence homology. We also find that gp87 is significantly more stable than mesophilic homologs. Our analysis of the gp87 structure reveals that the core "ß tulip" domain is conserved in trimeric capsid components across numerous double-stranded DNA viruses, including Herpesviruses. Moreover, this ß barrel domain is found in anti-CRISPR protein AcrIIC1, suggesting a mechanism for the evolution of this Cas9 inhibitor. Our work illustrates the principles for increased stability of gp87, and extends the evolutionary reach of the ß tulip domain.


Asunto(s)
Bacteriófagos/metabolismo , Proteínas de la Cápside/química , Herpesviridae/metabolismo , Bacteriófagos/química , Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Evolución Molecular , Herpesviridae/química , Modelos Moleculares , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína
17.
Sci Rep ; 8(1): 7511, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29760455

RESUMEN

The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A's involvement in mutation of endogenous or exogenous DNA.


Asunto(s)
Citidina Desaminasa/química , Citidina Desaminasa/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas/química , Proteínas/metabolismo , ARN/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , ADN de Cadena Simple/genética , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , ARN/química , Especificidad por Sustrato
18.
Nat Commun ; 8: 15024, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28452355

RESUMEN

Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5'-3' directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics.


Asunto(s)
Dominio Catalítico , Citidina Desaminasa/química , Citidina/química , ADN de Cadena Simple/química , Proteínas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Citidina/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Desaminación , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas/genética , Proteínas/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
19.
Nucleic Acids Res ; 45(6): 3591-3605, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28082398

RESUMEN

Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA.


Asunto(s)
Adenosina Trifosfatasas/química , ADN Viral/metabolismo , Endodesoxirribonucleasas/química , Proteínas Virales/química , Adenosina Trifosfatasas/metabolismo , Bacteriófagos/enzimología , Bacteriófagos/genética , Sitios de Unión , División del ADN , Endodesoxirribonucleasas/metabolismo , Modelos Moleculares , Dominios Proteicos , Proteínas Virales/metabolismo , Ensamble de Virus
20.
Biopolymers ; 105(8): 532-46, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26918303

RESUMEN

Sliding clamps are ring-shaped polymerase processivity factors that act as master regulators of cellular replication by coordinating multiple functions on DNA to ensure faithful transmission of genetic and epigenetic information. Dedicated AAA+ ATPase machines called clamp loaders actively place clamps on DNA, thereby governing clamp function by controlling when and where clamps are used. Clamp loaders are also important model systems for understanding the basic principles of AAA+ mechanism and function. After nearly 30 years of study, the ATP-dependent mechanism of opening and loading of clamps is now becoming clear. Here I review the structural and mechanistic aspects of the clamp loading process, as well as comment on questions that will be addressed by future studies. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 532-546, 2016.


Asunto(s)
Adenosina Trifosfatasas , Adenosina Trifosfato , Proteínas de Unión al ADN , ADN , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , ADN/biosíntesis , ADN/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...