Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cortex ; 172: 141-158, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38330778

RESUMEN

BACKGROUND: Cognitive control processes, including those involving frontoparietal networks, are highly variable between individuals, posing challenges to basic and clinical sciences. While distinct frontoparietal networks have been associated with specific cognitive control functions such as switching, inhibition, and working memory updating functions, there have been few basic tests of the role of these networks at the individual level. METHODS: To examine the role of cognitive control at the individual level, we conducted a within-subject excitatory transcranial magnetic stimulation (TMS) study in 19 healthy individuals that targeted intrinsic ("resting") frontoparietal networks. Person-specific intrinsic networks were identified with resting state functional magnetic resonance imaging scans to determine TMS targets. The participants performed three cognitive control tasks: an adapted Navon figure-ground task (requiring set switching), n-back (working memory), and Stroop color-word (inhibition). OBJECTIVE: Hypothesis: We predicted that stimulating a network associated with externally oriented control [the "FPCN-B" (fronto-parietal control network)] would improve performance on the set switching and working memory task relative to a network associated with attention (the Dorsal Attention Network, DAN) and cranial vertex in a full within-subjects crossover design. RESULTS: We found that set switching performance was enhanced by FPCN-B stimulation along with some evidence of enhancement in the higher-demand n-back conditions. CONCLUSION: Higher task demands or proactive control might be a distinguishing role of the FPCN-B, and personalized intrinsic network targeting is feasible in TMS designs.


Asunto(s)
Memoria a Corto Plazo , Estimulación Magnética Transcraneal , Humanos , Memoria a Corto Plazo/fisiología , Imagen por Resonancia Magnética , Inhibición Psicológica , Cognición/fisiología , Encéfalo/fisiología
2.
J Neurosci ; 42(24): 4913-4926, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35545436

RESUMEN

Aphasia is a prevalent cognitive syndrome caused by stroke. The rarity of premorbid imaging and heterogeneity of lesion obscures the links between the local effects of the lesion, global anatomic network organization, and aphasia symptoms. We applied a simulated attack approach in humans to examine the effects of 39 stroke lesions (16 females) on anatomic network topology by simulating their effects in a control sample of 36 healthy (15 females) brain networks. We focused on measures of global network organization thought to support overall brain function and resilience in the whole brain and within the left hemisphere. After removing lesion volume from the network topology measures and behavioral scores [the Western Aphasia Battery Aphasia Quotient (WAB-AQ), four behavioral factor scores obtained from a neuropsychological battery, and a factor sum], we compared the behavioral variance accounted for by simulated poststroke connectomes to that observed in the randomly permuted data. Global measures of anatomic network topology in the whole brain and left hemisphere accounted for 10% variance or more of the WAB-AQ and the lexical factor score beyond lesion volume and null permutations. Streamline networks provided more reliable point estimates than FA networks. Edge weights and network efficiency were weighted most highly in predicting the WAB-AQ for FA networks. Overall, our results suggest that global network measures provide modest statistical value beyond lesion volume when predicting overall aphasia severity, but less value in predicting specific behaviors. Variability in estimates could be induced by premorbid ability, deafferentation and diaschisis, and neuroplasticity following stroke.SIGNIFICANCE STATEMENT Poststroke, the remaining neuroanatomy maintains cognition and supports recovery. However, studies often use small, cross-sectional samples that cannot fully model the interactions between lesions and other variables that affect networks in stroke. Alternate methods are required to account for these effects. "Simulated attack" models are computational approaches that apply virtual damage to the brain and measure their putative consequences. Using a simulated attack model, we estimated how simulated damage to anatomic networks could account for language performance. Overall, our results reveal that global network measures can provide modest statistical value predicting overall aphasia severity, but less value in predicting specific behaviors. These findings suggest that more theoretically precise network models could be necessary to robustly predict individual outcomes in aphasia.


Asunto(s)
Afasia , Conectoma , Accidente Cerebrovascular , Afasia/diagnóstico por imagen , Afasia/etiología , Encéfalo/patología , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Accidente Cerebrovascular/patología
3.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34244340

RESUMEN

Recent work has combined cognitive neuroscience and control theory to make predictions about cognitive control functions. Here, we test a link between whole-brain theories of semantics and the role of the left inferior frontal gyrus (LIFG) in controlled language performance using network control theory (NCT), a branch of systems engineering. Specifically, we examined whether two properties of node controllability, boundary and modal controllability, were linked to semantic selection and retrieval on sentence completion and verb generation tasks. We tested whether the controllability of the left IFG moderated language selection and retrieval costs and the effects of continuous θ burst stimulation (cTBS), an inhibitory form of transcranial magnetic stimulation (TMS) on behavior in 41 human subjects (25 active, 16 sham). We predicted that boundary controllability, a measure of the theoretical ability of a node to integrate and segregate brain networks, would be linked to word selection in the contextually-rich sentence completion task. In contrast, we expected that modal controllability, a measure of the theoretical ability of a node to drive the brain into specifically hard-to-reach states, would be linked to retrieval on the low-context verb generation task. Boundary controllability was linked to selection and to the ability of TMS to reduce response latencies on the sentence completion task. In contrast, modal controllability was not linked to performance on the tasks or TMS effects. Overall, our results suggest a link between the network integrating role of the LIFG and selection and the overall semantic demands of sentence completion.


Asunto(s)
Mapeo Encefálico , Lenguaje , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal , Semántica , Estimulación Magnética Transcraneal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...