Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 36(12): 821-832, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37698455

RESUMEN

While arbuscular mycorrhizal (AM) fungi are known for providing host plants with improved drought tolerance, we know very little about the fungal response to drought in the context of the fungal-plant relationship. In this study, we evaluated the drought responses of the host and symbiont, using the fungus Rhizophagus irregularis with carrot (Daucus carota) as a plant model. Carrots inoculated with spores of R. irregularis DAOM 197198 were grown in a greenhouse. During taproot development, carrots were exposed to a 10-day water restriction. Compared with well-watered conditions, drought caused diminished photosynthetic activity and reduced plant growth in carrot with and without AM fungi. Droughted carrots had lower root colonization. For R. irregularis, 93% of 826 differentially expressed genes (DEGs) were upregulated during drought, including phosphate transporters, several predicted transport proteins of potassium, and the aquaporin RiAQPF2. In contrast, 78% of 2,486 DEGs in AM carrot were downregulated during drought, including the symbiosis-specific genes FatM, RAM2, and STR, which are implicated in lipid transfer from the host to the fungus and were upregulated exclusively in AM carrot during well-watered conditions. Overall, this study provides insight into the drought response of an AM fungus in relation to its host; the expression of genes related to symbiosis and nutrient exchange were downregulated in carrot but upregulated in the fungus. This study reveals that carrot and R. irregularis exhibit contrast in their regulation of gene expression during drought, with carrot reducing its apparent investment in symbiosis and the fungus increasing its apparent symbiotic efforts. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Daucus carota , Micorrizas , Micorrizas/genética , Daucus carota/genética , Sequías , Simbiosis/genética , Perfilación de la Expresión Génica , Transcriptoma/genética , Agua/metabolismo , Raíces de Plantas/microbiología
2.
Nat Commun ; 11(1): 3897, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753587

RESUMEN

Lipo-chitooligosaccharides (LCOs) are signaling molecules produced by rhizobial bacteria that trigger the nodulation process in legumes, and by some fungi that also establish symbiotic relationships with plants, notably the arbuscular and ecto mycorrhizal fungi. Here, we show that many other fungi also produce LCOs. We tested 59 species representing most fungal phyla, and found that 53 species produce LCOs that can be detected by functional assays and/or by mass spectroscopy. LCO treatment affects spore germination, branching of hyphae, pseudohyphal growth, and transcription in non-symbiotic fungi from the Ascomycete and Basidiomycete phyla. Our findings suggest that LCO production is common among fungi, and LCOs may function as signals regulating fungal growth and development.


Asunto(s)
Quitina/análogos & derivados , Quitina/metabolismo , Hongos/crecimiento & desarrollo , Hongos/metabolismo , Transducción de Señal/fisiología , Ascomicetos/crecimiento & desarrollo , Basidiomycota/crecimiento & desarrollo , Quitosano , Ecología , Ácidos Grasos/metabolismo , Micorrizas/fisiología , Oligosacáridos , Rhizobium/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Simbiosis/fisiología
3.
New Phytol ; 213(2): 531-536, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27780291

RESUMEN

531 I. 531 II. 532 III. 532 IV. 534 V. 534 535 References 535 SUMMARY: Arbuscular mycorrhizal (AM) fungi associate with the vast majority of land plants, providing mutual nutritional benefits and protecting hosts against biotic and abiotic stresses. Significant progress was made recently in our understanding of the genomic organization, the obligate requirements, and the sexual nature of these fungi through the release and subsequent mining of genome sequences. Genomic and genetic approaches also improved our understanding of the signal repertoire used by AM fungi and their plant hosts to recognize each other for the initiation and maintenance of this association. Evolutionary and bioinformatic analyses of host and nonhost plant genomes represent novel ways with which to decipher host mechanisms controlling these associations and shed light on the stepwise acquisition of this genetic toolkit during plant evolution. Mining fungal and plant genomes along with evolutionary and genetic approaches will improve understanding of these symbiotic associations and, in the long term, their usefulness in agricultural settings.


Asunto(s)
Evolución Biológica , Genómica , Micorrizas/genética , Hongos/genética , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...