Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Database (Oxford) ; 20242024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38554132

RESUMEN

In this report, we analyse the use of virtual reality (VR) as a method to navigate and explore complex knowledge graphs. Over the past few decades, linked data technologies [Resource Description Framework (RDF) and Web Ontology Language (OWL)] have shown to be valuable to encode such graphs and many tools have emerged to interactively visualize RDF. However, as knowledge graphs get larger, most of these tools struggle with the limitations of 2D screens or 3D projections. Therefore, in this paper, we evaluate the use of VR to visually explore SPARQL Protocol and RDF Query Language (SPARQL) (construct) queries, including a series of tutorial videos that demonstrate the power of VR (see Graph2VR tutorial playlist: https://www.youtube.com/playlist?list=PLRQCsKSUyhNIdUzBNRTmE-_JmuiOEZbdH). We first review existing methods for Linked Data visualization and then report the creation of a prototype, Graph2VR. Finally, we report a first evaluation of the use of VR for exploring linked data graphs. Our results show that most participants enjoyed testing Graph2VR and found it to be a useful tool for graph exploration and data discovery. The usability study also provides valuable insights for potential future improvements to Linked Data visualization in VR.


Asunto(s)
Web Semántica , Realidad Virtual , Humanos , Bases de Datos Factuales , Lenguaje
2.
Database (Oxford) ; 20232023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37114804

RESUMEN

The mapping of human-entered data to codified data formats that can be analysed is a common problem across medical research and health care. To identify risk and protective factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility and coronavirus disease 2019 (COVID-19) severity, frequent questionnaires were sent out to participants of the Lifelines Cohort Study starting 30 March 2020. Because specific drugs were suspected COVID-19 risk factors, the questionnaires contained multiple-choice questions about commonly used drugs and open-ended questions to capture all other drugs used. To classify and evaluate the effects of those drugs and group participants taking similar drugs, the free-text answers needed to be translated into standard Anatomical Therapeutic Chemical (ATC) codes. This translation includes handling misspelt drug names, brand names, comments or multiple drugs listed in one line that would prevent a computer from finding these terms in a simple lookup table. In the past, the translation of free-text responses to ATC codes was time-intensive manual labour for experts. To reduce the amount of manual curation required, we developed a method for the semi-automated recoding of the free-text questionnaire responses into ATC codes suitable for further analysis. For this purpose, we built an ontology containing the Dutch drug names linked to their respective ATC code(s). In addition, we designed a semi-automated process that builds upon the Molgenis method SORTA to map the responses to ATC codes. This method can be applied to support the encoding of free-text responses to facilitate the evaluation, categorization and filtering of free-text responses. Our semi-automatic approach to coding of drugs using SORTA turned out to be more than two times faster than current manual approaches to performing this activity. Database URL https://doi.org/10.1093/database/baad019.


Asunto(s)
COVID-19 , Humanos , Estudios de Cohortes , COVID-19/epidemiología , SARS-CoV-2 , Encuestas y Cuestionarios , Bases de Datos Factuales
3.
Yearb Med Inform ; 31(1): 262-272, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36463884

RESUMEN

OBJECTIVES: Existing individual-level human data cover large populations on many dimensions such as lifestyle, demography, laboratory measures, clinical parameters, etc. Recent years have seen large investments in data catalogues to FAIRify data descriptions to capitalise on this great promise, i.e. make catalogue contents more Findable, Accessible, Interoperable and Reusable. However, their valuable diversity also created heterogeneity, which poses challenges to optimally exploit their richness. METHODS: In this opinion review, we analyse catalogues for human subject research ranging from cohort studies to surveillance, administrative and healthcare records. RESULTS: We observe that while these catalogues are heterogeneous, have various scopes, and use different terminologies, still the underlying concepts seem potentially harmonizable. We propose a unified framework to enable catalogue data sharing, with catalogues of multi-center cohorts nested as a special case in catalogues of real-world data sources. Moreover, we list recommendations to create an integrated community of metadata catalogues and an open catalogue ecosystem to sustain these efforts and maximise impact. CONCLUSIONS: We propose to embrace the autonomy of motivated catalogue teams and invest in their collaboration via minimal standardisation efforts such as clear data licensing, persistent identifiers for linking same records between catalogues, minimal metadata 'common data elements' using shared ontologies, symmetric architectures for data sharing (push/pull) with clear provenance tracks to process updates and acknowledge original contributors. And most importantly, we encourage the creation of environments for collaboration and resource sharing between catalogue developers, building on international networks such as OpenAIRE and research data alliance, as well as domain specific ESFRIs such as BBMRI and ELIXIR.


Asunto(s)
Elementos de Datos Comunes , Ecosistema , Humanos , Estudios de Cohortes , Difusión de la Información
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...