Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515311

RESUMEN

Porous titanium scaffolds fabricated by powder bed fusion additive manufacturing techniques have been widely adopted for orthopedic and bone tissue engineering applications. Despite the many advantages of this approach, topological defects inherited from the fabrication process are well understood to negatively affect mechanical properties and pose a high risk if dislodged after implantation. Consequently, there is a need for further post-process surface cleaning. Traditional techniques such as grinding or polishing are not suited to lattice structures, due to lack of a line of sight to internal features. Chemical etching is a promising alternative; however, it remains unclear if changes to surface properties associated with such protocols will influence how cells respond to the material surface. In this study, we explored the response of bone marrow derived mesenchymal stem/stromal cells (MSCs) to Ti-6Al-4V whose surface was exposed to different durations of chemical etching. Cell morphology was influenced by local topological features inherited from the SLM fabrication process. On the as-built surface, topological nonhomogeneities such as partially adhered powder drove a stretched anisotropic cellular morphology, with large areas of the cell suspended across the nonhomogeneous powder interface. As the etching process was continued, surface defects were gradually removed, and cell morphology appeared more isotropic and was suggestive of MSC differentiation along an osteoblastic-lineage. This was accompanied by more extensive mineralization, indicative of progression along an osteogenic pathway. These findings point to the benefit of post-process chemical etching of additively manufactured Ti-6Al-4V biomaterials targeting orthopedic applications.

2.
Front Cell Dev Biol ; 12: 1365671, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344748

RESUMEN

[This corrects the article DOI: 10.3389/fcell.2022.1043117.].

3.
Biomacromolecules ; 25(1): 24-42, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-37890872

RESUMEN

Photodynamic therapy (PDT) is an anticancer therapy with proven efficacy; however, its application is often limited by prolonged skin photosensitivity and solubility issues associated with the phototherapeutic agents. Injectable hydrogels which can effectively provide intratumoral delivery of photosensitizers with sustained release are attracting increased interest for photodynamic cancer therapies. However, most of the hydrogels for PDT applications are based on systems with high complexity, and often, preclinical validation is not provided. Herein, we provide a simple and reliable pH-sensitive hydrogel formulation that presents appropriate rheological properties for intratumoral injection. For this, Temoporfin (m-THPC), which is one of the most potent clinical photosensitizers, was chemically modified to introduce functional groups that act as cross-linkers in the formation of chitosan-based hydrogels. The introduction of -COOH groups resulted in a water-soluble derivative, named PS2, that was the most promising candidate. Although PS2 was not internalized by the target cells, its extracellular activation caused effective damage to the cancer cells, which was likely mediated by lipid peroxidation. The injection of the hydrogel containing PS2 in the tumors was monitored by high-frequency ultrasounds and in vivo fluorescence imaging which confirmed the sustained release of PS2 for at least 72 h. Following local administration, light exposure was conducted one (single irradiation protocol) or three (multiple irradiation protocols) times. The latter delivered the best therapeutic outcomes, which included complete tumor regression and systemic anticancer immune responses. Immunological memory was induced as ∼75% of the mice cured with our strategy rejected a second rechallenge with live cancer cells. Additionally, the failure of PDT to treat immunocompromised mice bearing tumors reinforces the relevance of the host immune system. Finally, our strategy promotes anticancer immune responses that lead to the abscopal protection against distant metastases.


Asunto(s)
Quitosano , Neoplasias , Fotoquimioterapia , Ratones , Animales , Hidrogeles/química , Fármacos Fotosensibilizantes/farmacología , Quitosano/química , Preparaciones de Acción Retardada/farmacología , Neoplasias/tratamiento farmacológico
4.
Adv Mater ; 36(6): e2307639, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009631

RESUMEN

Treating bone infections and ensuring bone repair is one of the greatest global challenges of modern orthopedics, made complex by antimicrobial resistance (AMR) risks due to long-term antibiotic treatment and debilitating large bone defects following infected tissue removal. An ideal multi-faceted solution would will eradicate bacterial infection without long-term antibiotic use, simultaneously stimulating osteogenesis and angiogenesis. Here, a multifunctional collagen-based scaffold that addresses these needs by leveraging the potential of antibiotic-free antimicrobial nanoparticles (copper-doped bioactive glass, CuBG) to combat infection without contributing to AMR in conjunction with microRNA-based gene therapy (utilizing an inhibitor of microRNA-138) to stimulate both osteogenesis and angiogenesis, is developed. CuBG scaffolds reduce the attachment of gram-positive bacteria by over 80%, showcasing antimicrobial functionality. The antagomiR-138 nanoparticles induce osteogenesis of human mesenchymal stem cells in vitro and heal a large load-bearing defect in a rat femur when delivered on the scaffold. Combining both promising technologies results in a multifunctional antagomiR-138-activated CuBG scaffold inducing hMSC-mediated osteogenesis and stimulating vasculogenesis in an in vivo chick chorioallantoic membrane model. Overall, this multifunctional scaffold catalyzes killing mechanisms in bacteria while inducing bone repair through osteogenic and angiogenic coupling, making this platform a promising multi-functional strategy for treating and repairing complex bone infections.


Asunto(s)
MicroARNs , Nanopartículas , Humanos , Ratas , Animales , Andamios del Tejido , Regeneración Ósea , MicroARNs/genética , Antagomirs/farmacología , Osteogénesis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
5.
Adv Healthc Mater ; 13(3): e2300174, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37858935

RESUMEN

Scaffold-free tissue engineering aims to recapitulate key aspects of normal developmental processes to generate biomimetic grafts. Although functional cartilaginous tissues are engineered using such approaches, considerable challenges remain. Herein, the benefits of engineering cartilage via the fusion of multiple cartilage microtissues compared to using (millions of) individual cells to generate a cartilaginous graft are demonstrated. Key advantages include the generation of a richer extracellular matrix, more hyaline-like cartilage phenotype, and superior shape fidelity. A major drawback of aggregate engineering is that individual microtissues do not completely (re)model and remnants of their initial architectures remain throughout the macrotissue. To address this, a temporal enzymatic (chondroitinase-ABC) treatment is implemented to accelerate structural (re)modeling and shown to support robust fusion between adjacent microtissues, enhance microtissue (re)modeling, and enable the development of a more biomimetic tissue with a zonally organized collagen network. Additionally, enzymatic treatment is shown to modulate matrix composition, tissue phenotype, and to a lesser extent, tissue mechanics. This work demonstrates that microtissue self-organization is an effective method for engineering scaled-up cartilage grafts with a predefined geometry and near-native levels of matrix accumulation. Importantly, key limitations associated with using biological building blocks can be alleviated by temporal enzymatic treatment during graft development.


Asunto(s)
Cartílago Articular , Cartílago , Ingeniería de Tejidos/métodos , Matriz Extracelular/química
6.
J Biomed Mater Res A ; 112(3): 359-372, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921203

RESUMEN

Meniscus-related injuries are a common orthopedic challenge with an increasing incidence in the population. While the preservation of viable meniscal tissue is the preferred approach in repair strategies, complex or total traumatic lesions may require alternative therapeutic approaches such as meniscal reconstruction using allografts or engineered equivalents. Although clinical studies suggest promising outcomes with the use of acellular implants, further development is needed to improve their biological and mechanical requirements. Decellularized extracellular matrix (dECM) derived from menisci is a promising biomaterial for meniscus tissue engineering due to its recapitulation of the native tissue environment and the maintenance of tissue-specific cues. However, the associated mechanical limitations of dECM-derived scaffolds frequently impedes their adoption, requiring additional reinforcement or combining with stiffer biomaterials to increase their load-bearing properties. In this study, decellularized extracellular matrix was extracted and its fibrillation was controlled by adjusting both pH and salt concentrations to fabricate mechanically functional meniscal tissue equivalents. The effect of collagen fibrillation on the mechanical properties of the dECM constructs was assessed, and porcine-derived fibrochondrocytes were used to evaluate in vitro biocompatibility. It was also possible to fabricate meniscus-shaped implants by casting of the dECM and to render the implants suitable for off-the-shelf use by adopting a freeze-drying preservation method. Suture pull-out tests were also performed to assess the feasibility of using existing surgical methods to fix such implants within a damaged meniscus. This study highlights the potential of utilizing ECM-derived materials for meniscal tissue substitutes that closely mimic the mechanical and biological properties of native tissue.


Asunto(s)
Menisco , Andamios del Tejido , Animales , Porcinos , Andamios del Tejido/química , Matriz Extracelular Descelularizada , Matriz Extracelular/química , Ingeniería de Tejidos/métodos , Menisco/química , Materiales Biocompatibles , Concentración de Iones de Hidrógeno
7.
Adv Healthc Mater ; 13(3): e2302057, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933556

RESUMEN

Emerging additive manufacturing (AM) strategies can enable the engineering of hierarchal scaffold structures for guiding tissue regeneration. Here, the advantages of two AM approaches, melt electrowriting (MEW) and fused deposition modelling (FDM), are leveraged and integrated to fabricate hybrid scaffolds for large bone defect healing. MEW is used to fabricate a microfibrous core to guide bone healing, while FDM is used to fabricate a stiff outer shell for mechanical support, with constructs being coated with pro-osteogenic calcium phosphate (CaP) nano-needles. Compared to MEW scaffolds alone, hybrid scaffolds prevent soft tissue collapse into the defect region and support increased vascularization and higher levels of new bone formation 12 weeks post-implantation. In an additional group, hybrid scaffolds are also functionalized with BMP2 via binding to the CaP coating, which further accelerates healing and facilitates the complete bridging of defects after 12 weeks. Histological analyses demonstrate that such scaffolds support the formation of well-defined annular bone, with an open medullary cavity, smooth periosteal surface, and no evidence of abnormal ectopic bone formation. These results demonstrate the potential of integrating different AM approaches for the development of regenerative biomaterials, and in particular, demonstrate the enhanced bone healing outcomes possible with hybrid MEW-FDM constructs.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Huesos , Cicatrización de Heridas , Regeneración Ósea
8.
J Mech Behav Biomed Mater ; 150: 106292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109813

RESUMEN

All human tissues present with unique mechanical properties critical to their function. This is achieved in part through the specific architecture of the extracellular matrix (ECM) fibres within each tissue. An example of this is seen in the walls of the vasculature where each layer presents with a unique ECM orientation critical to its functions. Current adopted vascular grafts to bypass a stenosed/damaged vessel fail to recapitulate this unique mechanical behaviour, particularly in the case of small diameter vessels (<6 mm), leading to failure. Therefore, in this study, melt-electrowriting (MEW) was adopted to produce a range of fibrous scaffolds to mimic the extracellular matrix (ECM) architecture of the tunica media of the vasculature, in an attempt to match the mechanical and biological behaviour of the native porcine tissue. Initially, the range of collagen architectures within the native vessel was determined, and subsequently replicated using MEW (winding angles (WA) 45°, 26.5°, 18.4°, 11.3°). These scaffolds recapitulated the anisotropic, non-linear mechanical behaviour of native carotid blood vessels. Moreover, these grafts facilitated human mesenchymal stem cell (hMSC) infiltration, differentiation, and ECM deposition that was independent of WA. The bioinspired MEW fibre architecture promoted cell alignment and preferential neo-tissue orientation in a manner similar to that seen in native tissue, particularly for WA 18.4° and 11.3°, which is a mandatory requirement for long-term survival of the regenerated tissue post-scaffold degradation. Lastly, the WA 18.4° was translated to a tubular graft and was shown to mirror the mechanical behaviour of small diameter vessels within physiological strain. Taken together, this study demonstrates the capacity to use MEW to fabricate bioinspired scaffolds to mimic the tunica media of vessels and recapitulate vascular mechanics which could act as a framework for small diameter graft development to guide tissue regeneration and orientation.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Humanos , Porcinos , Colágeno , Matriz Extracelular , Diferenciación Celular
9.
Biofabrication ; 16(1)2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37939395

RESUMEN

Meniscus injuries are a common problem in orthopedic medicine and are associated with a significantly increased risk of developing osteoarthritis. While developments have been made in the field of meniscus regeneration, the engineering of cell-laden constructs that mimic the complex structure, composition and biomechanics of the native tissue remains a significant challenge. This can be linked to the use of cells that are not phenotypically representative of the different zones of the meniscus, and an inability to direct the spatial organization of engineered meniscal tissues. In this study we investigated the potential of zone-specific meniscus progenitor cells (MPCs) to generate functional meniscal tissue following their deposition into melt electrowritten (MEW) scaffolds. We first confirmed that fibronectin selected MPCs from the inner and outer regions of the meniscus maintain their differentiation capacity with prolonged monolayer expansion, opening their use within advanced biofabrication strategies. By depositing MPCs within MEW scaffolds with elongated pore shapes, which functioned as physical boundaries to direct cell growth and extracellular matrix production, we were able to bioprint anisotropic fibrocartilaginous tissues with preferentially aligned collagen networks. Furthermore, by using MPCs isolated from the inner (iMPCs) and outer (oMPCs) zone of the meniscus, we were able to bioprint phenotypically distinct constructs mimicking aspects of the native tissue. An iterative MEW process was then implemented to print scaffolds with a similar wedged-shaped profile to that of the native meniscus, into which we deposited iMPCs and oMPCs in a spatially controlled manner. This process allowed us to engineer sulfated glycosaminoglycan and collagen rich constructs mimicking the geometry of the meniscus, with MPCs generating a more fibrocartilage-like tissue compared to the mesenchymal stromal/stem cells. Taken together, these results demonstrate how the convergence of emerging biofabrication platforms with tissue-specific progenitor cells can enable the engineering of complex tissues such as the meniscus.


Asunto(s)
Bioimpresión , Menisco , Bioimpresión/métodos , Células Madre , Ingeniería de Tejidos/métodos , Colágeno , Andamios del Tejido/química
10.
J Biomech ; 154: 111590, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37163962

RESUMEN

Mechanical stimulation can modulate the chondrogenic differentiation of stem/progenitor cells and potentially benefit tissue engineering (TE) of functional articular cartilage (AC). Mechanical cues like hydrostatic pressure (HP) are often applied to cell-laden scaffolds, with little optimization of other key parameters (e.g. cell density, biomaterial properties) known to effect lineage commitment. In this study, we first sought to establish cell seeding densities and fibrin concentrations supportive of robust chondrogenesis of human mesenchymal stem cells (hMSCs). High cell densities (15*106 cells/ml) were more supportive of sGAG deposition on a per cell basis, while collagen deposition was higher at lower seeding densities (5*106 cells/ml). Employment of lower fibrin (2.5 %) concentration hydrogels supported more robust chondrogenesis of hMSCs, with higher collagen type II and lower collagen type X deposition compared to 5 % hydrogels. The application of HP to hMSCs maintained in identified chondro-inductive culture conditions had little effect on overall levels of cartilage-specific matrix production. However, if hMSCs were first temporally primed with TGF-ß3 before its withdrawal, they responded to HP by increased sGAG production. The response to HP in higher cell density cultures was also associated with a metabolic shift towards glycolysis, which has been linked with a mature chondrocyte-like phenotype. These results suggest that mechanical stimulation may not be necessary to engineer functional AC grafts using hMSCs if other culture conditions have been optimised. However, such bioreactor systems can potentially be employed to better understand how engineered tissues respond to mechanical loading in vivo once removed from in vitro culture environments.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Humanos , Condrogénesis/fisiología , Presión Hidrostática , Ingeniería de Tejidos/métodos , Diferenciación Celular , Hidrogeles , Fibrina , Células Cultivadas
11.
Biofabrication ; 15(3)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37201517

RESUMEN

Endochondral ossification (EO) is an essential biological process than underpins how human bones develop, grow, and heal in the event of a fracture. So much is unknown about this process, thus clinical manifestations of dysregulated EO cannot be adequately treated. This can be partially attributed to the absence of predictivein vitromodels of musculoskeletal tissue development and healing, which are integral to the development and preclinical evaluation of novel therapeutics. Microphysiological systems, or organ-on-chip devices, are advancedin vitromodels designed for improved biological relevance compared to traditionalin vitroculture models. Here we develop a microphysiological model of vascular invasion into developing/regenerating bone, thereby mimicking the process of EO. This is achieved by integrating endothelial cells and organoids mimicking different stages of endochondral bone development within a microfluidic chip. This microphysiological model is able to recreate key events in EO, such as the changing angiogenic profile of a maturing cartilage analogue, and vascular induced expression of the pluripotent transcription factors SOX2 and OCT4 in the cartilage analogue. This system represents an advancedin vitroplatform to further EO research, and may also serve as a modular unit to monitor drug responses on such processes as part of a multi-organ system.


Asunto(s)
Células Endoteliales , Osteogénesis , Humanos , Cartílago/fisiología , Huesos , Organoides , Dispositivos Laboratorio en un Chip
12.
ACS Biomater Sci Eng ; 9(6): 3488-3495, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37192278

RESUMEN

The meniscus is a fibrocartilage tissue that is integral to the correct functioning of the knee joint. The tissue possesses a unique collagen fiber architecture that is integral to its biomechanical functionality. In particular, a network of circumferentially aligned collagen fibers function to bear the high tensile forces generated in the tissue during normal daily activities. The limited regenerative capacity of the meniscus has motivated increased interest in meniscus tissue engineering; however, the in vitro generation of structurally organized meniscal grafts with a collagen architecture mimetic of the native meniscus remains a significant challenge. Here we used melt electrowriting (MEW) to produce scaffolds with defined pore architectures to impose physical boundaries upon cell growth and extracellular matrix production. This enabled the bioprinting of anisotropic tissues with collagen fibers preferentially oriented parallel to the long axis of the scaffold pores. Furthermore, temporally removing glycosaminoglycans (sGAGs) during the early stages of in vitro tissue development using chondroitinase ABC (cABC) was found to positively impact collagen network maturation. Specially we found that temporal depletion of sGAGs is associated with an increase in collagen fiber diameter without any detrimental effect on the development of a meniscal tissue phenotype or subsequent extracellular matrix production. Moreover, temporal cABC treatment supported the development of engineered tissues with superior tensile mechanical properties compared to empty MEW scaffolds. These findings demonstrate the benefit of temporal enzymatic treatments when engineering structurally anisotropic tissues using emerging biofabrication technologies such as MEW and inkjet bioprinting.


Asunto(s)
Condroitina ABC Liasa , Menisco , Condroitina ABC Liasa/farmacología , Ingeniería de Tejidos , Colágeno/farmacología , Matriz Extracelular
13.
Mater Today Bio ; 20: 100624, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37122835

RESUMEN

Decellularized extracellular matrix (dECM) has emerged as a promising biomaterial in the fields of tissue engineering and regenerative medicine due to its ability to provide specific biochemical and biophysical cues supportive of the regeneration of diverse tissue types. Such biomaterials have also been used to produce tissue-specific inks and bioinks for 3D printing applications. However, a major limitation associated with the use of such dECM materials is their poor mechanical properties, which limits their use in load-bearing applications such as meniscus regeneration. In this study, native porcine menisci were solubilized and decellularized using different methods to produce highly concentrated dECM inks of differing biochemical content and printability. All dECM inks displayed shear thinning and thixotropic properties, with increased viscosity and improved printability observed at higher pH levels, enabling the 3D printing of anatomically defined meniscal implants. With additional crosslinking of the dECM inks following thermal gelation at pH 11, it was possible to fabricate highly elastic meniscal tissue equivalents with compressive mechanical properties similar to the native tissue. These improved mechanical properties at higher pH correlated with the development of a denser network of smaller diameter collagen fibers. These constructs also displayed repeatable loading and unloading curves when subjected to long-term cyclic compression tests. Moreover, the printing of dECM inks at the appropriate pH promoted a preferential alignment of the collagen fibers. Altogether, these findings demonstrate the potential of 3D printing of highly concentrated meniscus dECM inks to produce mechanically functional and biocompatible implants for meniscal tissue regeneration. This approach could be applied to a wide variety of different biological tissues, enabling the 3D printing of tissue mimics with diverse applications from tissue engineering to surgical planning.

15.
J Am Chem Soc ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37021910

RESUMEN

Electrocatalytic carbon dioxide reduction (CO2R) in neutral electrolytes can mitigate the energy and carbon losses caused by carbonate formation but often experiences unsatisfied multicarbon selectivity and reaction rates because of the kinetic limitation to the critical carbon monoxide (CO)-CO coupling step. Here, we describe that a dual-phase copper-based catalyst with abundant Cu(I) sites at the amorphous-nanocrystalline interfaces, which is electrochemically robust in reducing environments, can enhance chloride-specific adsorption and consequently mediate local *CO coverage for improved CO-CO coupling kinetics. Using this catalyst design strategy, we demonstrate efficient multicarbon production from CO2R in a neutral potassium chloride electrolyte (pH ∼6.6) with a high Faradaic efficiency of 81% and a partial current density of 322 milliamperes per square centimeter. This catalyst is stable after 45 h of operation at current densities relevant to commercial CO2 electrolysis (300 mA per square centimeter).

16.
Adv Mater ; 35(23): e2207877, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36994935

RESUMEN

Patients diagnosed with osteosarcoma undergo extensive surgical intervention and chemotherapy resulting in dismal prognosis and compromised quality of life owing to poor bone regeneration, which is further compromised with chemotherapy delivery. This study aims to investigate if localized delivery of miR-29b-which is shown to promote bone formation by inducing osteoblast differentiation and also to suppress prostate and cervical tumor growth-can suppress osteosarcoma tumors whilst simultaneously normalizing the dysregulation of bone homeostasis caused by osteosarcoma. Thus, the therapeutic potential of microRNA (miR)-29b is studied to promote bone remodeling in an orthotopic model of osteosarcoma (rather than in bone defect models using healthy mice), and in the context of chemotherapy, that is clinically relevant. A formulation of miR-29b:nanoparticles are developed that are delivered via a hyaluronic-based hydrogel to enable local and sustained release of the therapy and to study the potential of attenuating tumor growth whilst normalizing bone homeostasis. It is found that when miR-29b is delivered along with systemic chemotherapy, compared to chemotherapy alone, the therapy provided a significant decrease in tumor burden, an increase in mouse survival, and a significant decrease in osteolysis thereby normalizing the dysregulation of bone lysis activity caused by the tumor.


Asunto(s)
Neoplasias Óseas , MicroARNs , Nanopartículas , Osteólisis , Osteosarcoma , Masculino , Ratones , Animales , Calidad de Vida , MicroARNs/genética , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/patología , Osteólisis/tratamiento farmacológico , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología
17.
Acta Biomater ; 160: 311-321, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754270

RESUMEN

Since the recent observation that immune cells undergo metabolic reprogramming upon activation, there has been immense research in this area to not only understand the basis of such changes, but also to exploit metabolic rewiring for therapeutic benefit. In a resting state, macrophages preferentially utilise oxidative phosphorylation to generate energy; however, in the presence of immune cell activators, glycolytic genes are upregulated, and energy is generated through glycolysis. This facilitates the rapid production of biosynthetic intermediates and a pro-inflammatory macrophage phenotype. While this is essential to mount responses to infectious agents, more evidence is accumulating linking dysregulated metabolism to inappropriate immune responses. Given that certain biomaterials are known to promote an inflammatory macrophage phenotype, this prompted us to investigate if biomaterial particulates can impact on macrophage metabolism. Using micron and nano sized hydroxyapatite (HA), we demonstrate for the first time that these biomaterials can indeed drive changes in metabolism, and that this occurs in a size-dependent manner. We show that micronHA, but not nanoHA, particles upregulate surrogate markets of glycolysis including the glucose transporter (GLUT1), hexokinase 2 (HK2), GAPDH, and PKM2. Furthermore, we demonstrate that micronHA alters mitochondrial morphology and promotes a bioenergetic shift to favour glycolysis. Finally, we demonstrate that glycolytic gene expression is dependent on particle uptake and that targeting glycolysis attenuates the pro-inflammatory profile of micronHA-treated macrophages. These results not only further our understanding of biomaterial-based macrophage activation, but also implicate immunometabolism as a new area for consideration in intelligent biomaterial design and therapeutic targeting. STATEMENT OF SIGNIFICANCE: Several recent studies have reported that immune cell activation occurs concurrently with metabolic reprogramming. Furthermore, metabolic reprogramming of innate immune cells plays a prominent role in determining cellular phenotype and function. In this study we demonstrate that hydroxyapatite particle size alters macrophage metabolism, in turn driving their functional phenotype. Specifically, the pro-inflammatory phenotype promoted by micron-sized HA-particles is accompanied by changes in mitochondrial dynamics and a bioenergetic shift favouring glycolysis. This effect is not seen with nano-HA particles and can be attenuated upon inhibition of glycolysis. This study therefore not only identifies immunometabolism as a useful tool for characterising the immune response to biomaterials, but also highlights immunometabolism as a targetable aspect of the host response for therapeutic benefit.


Asunto(s)
Durapatita , Macrófagos , Durapatita/farmacología , Tamaño de la Partícula , Macrófagos/metabolismo , Materiales Biocompatibles/farmacología , Metaboloma , Activación de Macrófagos
18.
Acta Biomater ; 158: 216-227, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638941

RESUMEN

The meniscus is characterised by an anisotropic collagen fibre network which is integral to its biomechanical functionality. The engineering of structurally organized meniscal grafts that mimic the anisotropy of the native tissue remains a significant challenge. In this study, inkjet bioprinting was used to deposit a cell-laden bioink into additively manufactured scaffolds of differing architectures to engineer fibrocartilage grafts with user defined collagen architectures. Polymeric scaffolds consisting of guiding fibre networks with varying aspect ratios (1:1; 1:4; 1:16) were produced using either fused deposition modelling (FDM) or melt electrowriting (MEW), resulting in scaffolds with different internal architectures and fibre diameters. Scaffold architecture was found to influence the spatial organization of the collagen network laid down by the jetted cells, with higher aspect ratios (1:4 and 1:16) supporting the formation of structurally anisotropic tissues. The MEW scaffolds supported the development of a fibrocartilaginous tissue with compressive mechanical properties similar to that of native meniscus, while the anisotropic tensile properties of these constructs could be tuned by altering the fibre network aspect ratio. This MEW framework was then used to generate scaffolds with spatially distinct fibre patterns, which in turn supported the development of heterogenous tissues consisting of isotropic and anisotropic collagen networks. Such bioprinted tissues could potentially form the basis of new treatment options for damaged and diseased meniscal tissue. STATEMENT OF SIGNIFICANCE: This study describes a multiple tool biofabrication strategy which enables the engineering of spatially organized fibrocartilage tissues. The architecture of MEW scaffolds can be tailored to not only modulate the directionality of the collagen fibres laid down by cells, but also to tune the anisotropic tensile mechanical properties of the resulting constructs, thereby enabling the engineering of biomimetic meniscal-like tissues. Furthermore, the inherent flexibility of MEW enables the development of zonally defined and potentially patient-specific implants.


Asunto(s)
Bioimpresión , Menisco , Humanos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Bioimpresión/métodos , Anisotropía , Colágeno
19.
Tissue Eng Part C Methods ; 29(4): 121-133, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36719783

RESUMEN

Engineering clinically relevant musculoskeletal tissues at a human scale is a considerable challenge. Developmentally inspired scaffold-free approaches for engineering cartilage tissues have shown great promise in recent years, enabling the generation of highly biomimetic tissues. Despite the relative success of these approaches, the absence of a supporting scaffold or hydrogel creates challenges in the development of large-scale tissues. Combining numerous scaled-down tissue units (herein termed microtissues) into a larger macrotissue represents a promising strategy to address this challenge. The overall success of such approaches, however, relies on the development of strategies which support the robust and consistent chondrogenic differentiation of clinically relevant cell sources such as mesenchymal stem/stromal cells (MSCs) within microwell arrays to biofabricate numerous microtissues rich in cartilage-specific extracellular matrix components. In this article, we first describe a simple method to manufacture cartilage microtissues at various scales using novel microwell array stamps. This system allows the rapid and reliable generation of cartilage microtissues and can be used as a platform to study microtissue phenotype and development. Based on the unexpected discovery that Endothelial Growth Medium (EGM) enhanced MSC aggregation and chondrogenic capacity within the microwell arrays, this work also sought to identify soluble factors within the media capable of supporting robust differentiation using heterogeneous MSC populations. Hydrocortisone was found to be the key factor within EGM that enhanced the chondrogenic capacity of MSCs within these microwell arrays. This strategy represents a promising means of generating large numbers of high-quality, scaffold-free cartilage microtissues for diverse biofabrication applications. Impact statement This study addresses a key challenge facing emerging modular biofabrication strategies that use microtissues as biological building blocks. Namely, achieving the necessary robust and consistent differentiation of clinically relevant cell sources, for example, mesenchymal stem/stromal cells (MSCs), and the accumulation of sufficient tissue-specific extracellular matrix (ECM) to engineer tissue of scale. We achieved this by establishing hydrocortisone as a simple and potent method for improving MSC chondrogenesis, resulting in the biofabrication of high-quality (ECM rich) cartilage microtissues. These findings could enable the generation of more scalable engineered cartilage by ensuring the formation of high-quality microtissue building blocks generated using heterogeneous MSC populations.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Humanos , Hidrocortisona , Diferenciación Celular , Hidrogeles , Condrogénesis , Medios de Cultivo , Ingeniería de Tejidos/métodos
20.
Acta Biomater ; 156: 61-74, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35907556

RESUMEN

Damaged or diseased bone can be treated using autografts or a range of different bone grafting biomaterials, however limitations with such approaches has motivated increased interest in developmentally inspired bone tissue engineering (BTE) strategies that seek to recapitulate the process of endochondral ossification (EO) as a means of regenerating critically sized defects. The clinical translation of such strategies will require the engineering of scaled-up, geometrically defined hypertrophic cartilage grafts that can be rapidly vascularised and remodelled into bone in mechanically challenging defect environments. The goal of this study was to 3D bioprint mechanically reinforced cartilaginous templates and to assess their capacity to regenerate critically sized femoral bone defects. Human mesenchymal stem/stromal cells (hMSCs) were incorporated into fibrin based bioinks and bioprinted into polycaprolactone (PCL) frameworks to produce mechanically reinforced constructs. Chondrogenic priming of such hMSC laden constructs was required to support robust vascularisation and graft mineralisation in vivo following their subcutaneous implantation into nude mice. With a view towards maximising their potential to support endochondral bone regeneration, we next explored different in vitro culture regimes to produce chondrogenic and early hypertrophic engineered grafts. Following their implantation into femoral bone defects within transiently immunosuppressed rats, such bioprinted constructs were rapidly remodelled into bone in vivo, with early hypertrophic constructs supporting higher levels of vascularisation and bone formation compared to the chondrogenic constructs. Such early hypertrophic bioprinted constructs also supported higher levels of vascularisation and spatially distinct patterns of new formation compared to BMP-2 loaded collagen scaffolds (here used as a positive control). In conclusion, this study demonstrates that fibrin based bioinks support chondrogenesis of hMSCs in vitro, which enables the bioprinting of mechanically reinforced hypertrophic cartilaginous templates capable of supporting large bone defect regeneration. These results support the use of 3D bioprinting as a strategy to scale-up the engineering of developmentally inspired templates for BTE. STATEMENT OF SIGNIFICANCE: Despite the promise of developmentally inspired tissue engineering strategies for bone regeneration, there are still challenges that need to be addressed to enable clinical translation. This work reports the development and assessment (in vitro and in vivo) of a 3D bioprinting strategy to engineer mechanically-reinforced cartilaginous templates for large bone defect regeneration using human MSCs. Using distinct in vitro priming protocols, it was possible to generate cartilage grafts with altered phenotypes. More hypertrophic grafts, engineered in vitro using TGF-ß3 and BMP-2, supported higher levels of blood vessel infiltration and accelerated bone regeneration in vivo. This study also identifies some of the advantages and disadvantages of such endochondral bone TE strategies over the direct delivery of BMP-2 from collagen-based scaffolds.


Asunto(s)
Bioimpresión , Células Madre Mesenquimatosas , Ratones , Ratas , Humanos , Animales , Ratones Desnudos , Cartílago , Ingeniería de Tejidos/métodos , Colágeno , Andamios del Tejido , Condrogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...