Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PeerJ ; 11: e15622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663287

RESUMEN

Avian migration has fascinated humans for centuries. Insights into the lives of migrant birds are often elusive; however, recent, standalone technological innovations have revolutionized our understanding of this complex biological phenomenon. A future challenge for following these highly mobile animals is the necessity of bringing multiple technologies together to capture a more complete understanding of their movements. Here, we designed a proof-of-concept multi-sensor array consisting of two weather surveillance radars (WSRs), one local and one regional, an autonomous moon-watching sensor capable of detecting birds flying in front of the moon, and an autonomous recording unit (ARU) capable of recording avian nocturnal flight calls. We deployed this array at a field site in central Oklahoma on select nights in March, April, and May of 2021 and integrated data from this array with wind data corresponding to this site to examine the influence of wind on the movements of spring migrants aloft across these spring nights. We found that regional avian migration intensity is statistically significantly negatively correlated with wind velocity, in line with previous research. Furthermore, we found evidence suggesting that when faced with strong, southerly winds, migrants take advantage of these conditions by adjusting their flight direction by drifting. Importantly, we found that most of the migration intensities detected by the sensors were intercorrelated, except when this correlation could not be ascertained because we lacked the sample size to do so. This study demonstrates the potential for multi-sensor arrays to reveal the detailed ways in which avian migrants move in response to changing atmospheric conditions while in flight.


Asunto(s)
Aves , Clima , Animales , Humanos , Luna , Movimiento
3.
Trends Ecol Evol ; 38(4): 355-368, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36610920

RESUMEN

Light pollution is a global threat to biodiversity, especially migratory organisms, some of which traverse hemispheric scales. Research on light pollution has grown significantly over the past decades, but our review of migratory organisms demonstrates gaps in our understanding, particularly beyond migratory birds. Research across spatial scales reveals the multifaceted effects of artificial light on migratory species, ranging from local and regional to macroscale impacts. These threats extend beyond species that are active at night - broadening the scope of this threat. Emerging tools for measuring light pollution and its impacts, as well as ecological forecasting techniques, present new pathways for conservation, including transdisciplinary approaches.


Asunto(s)
Biodiversidad , Contaminación Lumínica , Animales , Conducta Animal , Aves , Migración Animal
4.
Glob Chang Biol ; 29(5): 1407-1419, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36397251

RESUMEN

Organisms have been shifting their timing of life history events (phenology) in response to changes in the emergence of resources induced by climate change. Yet understanding these patterns at large scales and across long time series is often challenging. Here we used the US weather surveillance radar network to collect data on the timing of communal swallow and martin roosts and evaluate the scale of phenological shifts and its potential association with temperature. The discrete morning departures of these aggregated aerial insectivores from ground-based roosting locations are detected by radars around sunrise. For the first time, we applied a machine learning algorithm to automatically detect and track these large-scale behaviors. We used 21 years of data from 12 weather surveillance radar stations in the Great Lakes region to quantify the phenology in roosting behavior of aerial insectivores at three spatial levels: local roost cluster, radar station, and across the Great Lakes region. We show that their peak roosting activity timing has advanced by 2.26 days per decade at the regional scale. Similar signals of advancement were found at the station scale, but not at the local roost cluster scale. Air temperature trends in the Great Lakes region during the active roosting period were predictive of later stages of roosting phenology trends (75% and 90% passage dates). Our study represents one of the longest-term broad-scale phenology examinations of avian aerial insectivore species responding to environmental change and provides a stepping stone for examining potential phenological mismatches across trophic levels at broad spatial scales.


Asunto(s)
Radar , Tiempo (Meteorología) , Estaciones del Año , Temperatura , Cambio Climático , Great Lakes Region
5.
Biol Lett ; 17(3): 20200808, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33784873

RESUMEN

Anthropogenic environmental change affects organisms by exposing them to enhanced sensory stimuli that can elicit novel behavioural responses. A pervasive feature of the built environment is artificial nocturnal lighting, and brightly lit urban areas can influence organism abundance, distribution and community structure within proximate landscapes. In some cases, the attractive or disorienting effect of artificial light at night can draw animals into highly unfavourable habitats, acting as a macroscale attractive ecological sink. Despite their significance for animal ecology, identifying cases of these phenomena and determining their effective scales and the number of organisms impacted remains challenging. Using an integrated set of remote-sensing observations, we quantify the effect of a large-scale attractive sink on nocturnal flights of an outbreak insect population in Las Vegas, USA. At the peak of the outbreak, over 45 million grasshoppers took flight across the region, with the greatest numbers concentrating over high-intensity city lighting. Patterns of dusk ascent from vegetated habitat toward urban areas suggest a daily pull toward a time-varying nocturnal attractive sink. The strength of this attractor varies with grasshopper density. These observations provide the first macroscale characterization of the effects of nocturnal urban lighting on the behaviour of regional insect populations and demonstrate the link between insect perception of the built environment and resulting changes in spatial and movement ecology. As human-induced environmental change continues to affect insect populations, understanding the impacts of nocturnal light on insect behaviour and fitness will be vital to developing robust large-scale management and conservation strategies.


Asunto(s)
Luz , Iluminación , Animales , Ciudades , Brotes de Enfermedades , Humanos , Insectos
6.
Proc Natl Acad Sci U S A ; 117(6): 2987-2992, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31964842

RESUMEN

Seasonal animal movement among disparate habitats is a fundamental mechanism by which energy, nutrients, and biomass are transported across ecotones. A dramatic example of such exchange is the annual emergence of mayfly swarms from freshwater benthic habitats, but their characterization at macroscales has remained impossible. We analyzed radar observations of mayfly emergence flights to quantify long-term changes in annual biomass transport along the Upper Mississippi River and Western Lake Erie Basin. A single emergence event can produce 87.9 billion mayflies, releasing 3,078.6 tons of biomass into the airspace over several hours, but in recent years, production across both waterways has declined by over 50%. As a primary prey source in aquatic and terrestrial ecosystems, these declines will impact higher trophic levels and environmental nutrient cycling.


Asunto(s)
Ecosistema , Ephemeroptera/crecimiento & desarrollo , Distribución Animal , Animales , Biomasa , Ephemeroptera/fisiología , Femenino , Masculino , Mississippi , Dinámica Poblacional
7.
HardwareX ; 7: e00106, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35495206

RESUMEN

Moon watching is a method of quantifying nocturnal bird migration by focusing a telescope on the moon and recording observations of flying birds silhouetted against the lunar surface. Although simple and well-established, researchers use moon watching infrequently due in part to the hours of late night observation it requires. To reduce the labor entailed in moon watching, we designed a low-cost system called LunAero that can track and record video of the moon at night. Here we present a proof-of-concept prototype that can serve as a platform for citizen scientists interested in observing nocturnal bird migration. We tested the video recording on clear nights from February 2018 to May 2019 when the moon was full or nearly full. Manual analysis of a 1.5 h sample of video revealed a total of 450 birds, which is a much higher detection rate than previous moon watching efforts have yielded. The hardware described here is part of a larger effort involving software development (currently underway) to automate recorded video analysis. We argue that LunAero can reduce the labor involved in moon watching, offer improved data quality over traditional moon watching, and provide insights into social behavior and wind-drift compensation in migrating birds.

8.
Glob Chang Biol ; 25(3): 1106-1118, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30623528

RESUMEN

Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995-2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007-2015) or the annual timing of peak migration (1995-2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade-1 ). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger-bodied shorter-distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America.


Asunto(s)
Migración Animal , Aves/fisiología , Animales , Golfo de México , Estaciones del Año , Temperatura , Tiempo (Meteorología)
9.
Ecol Lett ; 21(7): 1055-1064, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29736919

RESUMEN

The migratory patterns of birds have been the focus of ecologists for millennia. What behavioural traits underlie these remarkably consistent movements? Addressing this question is central to advancing our understanding of migratory flight strategies and requires the integration of information across levels of biological organisation, e.g. species to communities. Here, we combine species-specific observations from the eBird citizen-science database with observations aggregated from weather surveillance radars during spring migration in central North America. Our results confirm a core prediction of migration theory at an unprecedented national scale: body mass predicts variation in flight strategies across latitudes, with larger-bodied species flying faster and compensating more for wind drift. We also find evidence that migrants travelling northward earlier in the spring increasingly compensate for wind drift at higher latitudes. This integration of information across biological scales provides new insight into patterns and determinants of broad-scale flight strategies of migratory birds.


Asunto(s)
Migración Animal , Aves , Vuelo Animal , Viento , Animales , América Central , América del Norte , Estados Unidos
10.
Curr Biol ; 28(3): R99-R100, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29408264

RESUMEN

In their 2015 Current Biology paper, Streby et al.[1] reported that Golden-winged Warblers (Vermivora chrysoptera), which had just migrated to their breeding location in eastern Tennessee, performed a facultative and up to ">1,500 km roundtrip" to the Gulf of Mexico to avoid a severe tornadic storm. From light-level geolocator data, wherein geographical locations are estimated via the timing of sunrise and sunset, Streby et al.[1] concluded that the warblers had evacuated their breeding area approximately 24 hours before the storm and returned about five days later. The authors presented this finding as evidence that migratory birds avoid severe storms by temporarily moving long-distances. However, the tracking method employed by Streby et al.[1] is prone to considerable error and uncertainty. Here, we argue that this interpretation of the data oversteps the limits of the used tracking technique. By calculating the expected geographical error range for the tracked birds, we demonstrate that the hypothesized movements fell well within the geolocators' inherent error range for this species and that such deviations in latitude occur frequently even if individuals remain stationary.


Asunto(s)
Passeriformes , Pájaros Cantores , Migración Animal , Animales , Reacción de Prevención , Cruzamiento
11.
Mov Ecol ; 6: 2, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29340153

RESUMEN

BACKGROUND: Autumn latitudinal migrations generally exhibit one of two different temporal migration patterns: type 1 where southern populations migrate south before northern populations, or type 2 where northern populations overtake southern populations en route. The ruby-throated hummingbird (Archilochus colubris) is a species with an expansive breeding range, which allows opportunities to examine variation in the timing of migration. Our objective was to determine a relationship between natal origin of ruby-throated hummingbirds and arrival at a Gulf coast stopover site; and if so, what factors, such as differences in body size across the range as well as the cost of migration, might drive such a pattern. To carry out our objectives, we captured hummingbirds at a coastal stopover site during autumn migration, at which time we collected feathers from juveniles for analysis of hydrogen stable isotopes. Using the hydrogen stable isotope gradient of precipitation across North America and published hydrogen isotope values of feathers from populations of breeding ruby-throated hummingbirds, we assigned migrants to probable natal latitudes. RESULTS: Our results confirm that individuals from across the range (30-50° N) stopover along the Gulf of Mexico and there is a positive relationship between arrival day and latitude, suggesting a type 1 migration pattern. We also found no relationship between fuel load (proxy for migration cost) or fat-free body mass (proxy for body size) and natal latitude. CONCLUSIONS: Our results, coupled with previous work on the spatial migration patterns of hummingbirds, show a type 1 chain migration pattern. While the mechanisms we tested do not seem to influence the evolution of migratory patterns, other factors such as resource availability may play a prominent role in the evolution of this migration system.

12.
PLoS One ; 13(1): e0190859, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29324772

RESUMEN

Complex behavioral traits, such as those making up a migratory phenotype, are regulated by multiple environmental factors and multiple genes. We investigated possible relationships between microsatellite variation at two candidate genes implicated in the control of migratory behavior, Clock and Adcyap1, and several aspects of migratory life-history and evolutionary divergence in the Painted Bunting (Passerina ciris), a species that shows wide variation in migratory and molting strategies across a disjunct distribution. We focused on Clock and Adcyap1 microsatellite variation across three Painted Bunting populations in Oklahoma, Louisiana, and North Carolina, and for the Oklahoma breeding population we used published migration tracking data on adult males to explore phenotypic variation in individual migratory behavior. We found no correlation between microsatellite allele size within either Clock and Adcyap1 relative to the initiation or duration of fall migration in adult males breeding in Oklahoma. We also show the lack of significant correlations with aspects of the migratory phenotype for the Louisiana population. Our research highlights the limitations of studying microsatellite allelic mutations that are of undetermined functional influence relative to complex behavioral phenotypes.


Asunto(s)
Proteínas Aviares/genética , Proteínas CLOCK/genética , Variación Genética , Repeticiones de Microsatélite , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Pájaros Cantores/genética , Alelos , Migración Animal , Animales , Evolución Biológica , Estudios de Asociación Genética , Louisiana , Masculino , Muda/genética , Mutación , North Carolina , Oklahoma , Fenotipo , Pájaros Cantores/fisiología
13.
Trends Ecol Evol ; 32(1): 1-3, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27884485

RESUMEN

This paper describes a process of 'open' interdisciplinary scholarship. Researchers from across the University of Oklahoma blogged about a recent paper by ecologist Erle Ellis, and met in person to discuss posts. They then hosted Ellis for a seminar on questions that emerged, and for a public panel discussion.


Asunto(s)
Blogging , Comunicación Interdisciplinaria , Humanos , Investigadores
14.
Bioscience ; 67(10): 912-918, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29599538

RESUMEN

Migratory animals provide a multitude of services and disservices-with benefits or costs in the order of billions of dollars annually. Monitoring, quantifying, and forecasting migrations across continents could assist diverse stakeholders in utilizing migrant services, reducing disservices, or mitigating human-wildlife conflicts. Radars are powerful tools for such monitoring as they can assess directional intensities, such as migration traffic rates, and biomass transported. Currently, however, most radar applications are local or small scale and therefore substantially limited in their ability to address large-scale phenomena. As weather radars are organized into continent-wide networks and also detect "biological targets," they could routinely monitor aerial migrations over the relevant spatial scales and over the timescales required for detecting responses to environmental perturbations. To tap these unexploited resources, a concerted effort is needed among diverse fields of expertise and among stakeholders to recognize the value of the existing infrastructure and data beyond weather forecasting.

15.
Biol Lett ; 12(11)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27881761

RESUMEN

The lower atmosphere (i.e. aerosphere) is critical habitat for migrant birds. This habitat is vast and little is known about the spatio-temporal patterns of distribution and abundance of migrants in it. Increased human encroachment into the aerosphere makes understanding where and when migratory birds use this airspace a key to reducing human-wildlife conflicts. We use weather surveillance radar to describe large-scale height distributions of nocturnally migrating birds and interpret these distributions as aggregate habitat selection behaviours of individual birds. As such, we detail wind cues that influence selection of flight heights. Using six radars in the eastern USA during the spring (2013-2015) and autumn (2013 and 2014), we found migrants tended to adjust their heights according to favourable wind profit. We found that migrants' flight altitudes correlated most closely with the altitude of maximum wind profit; however, absolute differences in flight heights and height of maximum wind profit were large. Migrants tended to fly slightly higher at inland sites compared with coastal sites during spring, but not during autumn. Migration activity was greater at coastal sites during autumn, but not during spring. This characterization of bird migration represents a critical advance in our understanding of migrant distributions in flight and a new window into habitat selection behaviours.


Asunto(s)
Altitud , Migración Animal , Aves/fisiología , Ecosistema , Vuelo Animal , Animales , Radar , Tecnología de Sensores Remotos , Estaciones del Año , Estados Unidos , Viento
16.
Sci Rep ; 6: 35637, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762292

RESUMEN

The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.


Asunto(s)
Biología/métodos , Aves/fisiología , Quirópteros/fisiología , Fenómenos Electromagnéticos , Vuelo Animal , Insectos/fisiología , Radar/estadística & datos numéricos , Animales , Modelos Teóricos
17.
PLoS One ; 11(8): e0160106, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27557096

RESUMEN

Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals' life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human-wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement.


Asunto(s)
Migración Animal , Aves , Oscuridad , Vuelo Animal , Radar , Animales , Europa (Continente) , Estados Unidos , Navegador Web
18.
Integr Zool ; 11(4): 240-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27061206

RESUMEN

To search for genes associated with migratory phenotypes in songbirds, we selected candidate genes through annotations from the Mouse Genome Informatics database and assembled an extensive candidate-gene library. Then, we implemented a next-generation sequencing approach to obtain DNA sequences from the Painted Bunting genome. We focused on those sequences that were conserved across avian species and that aligned with candidate genes in our mouse library. We genotyped short sequence repeats from the following candidate genes: ADRA1d, ANKRD17, CISH and MYH7. We studied the possible correlations between allelic variations occurring in these novel candidate migration genes and avian migratory phenotypes available from the published literature. We found that allele variation at MYH7 correlated with a calculated index of speed of migration (km/day) across 11 species of songbirds. We highlight the potential of the Mouse Genome Informatics database in providing new candidate genes that might play a crucial role in regulating migration in birds and possibly in other taxa. Our research effort shows the benefits and limitations of working with extensive genomic datasets and offers a snapshot of the challenges related to cross-species validation in behavioral and molecular ecology studies.


Asunto(s)
Migración Animal , Bases de Datos Genéticas , Genoma , Ratones/genética , Pájaros Cantores/genética , Animales , Repeticiones de Microsatélite , Fenotipo , Investigación , Pájaros Cantores/fisiología
19.
Sci Rep ; 6: 21249, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26879152

RESUMEN

The shortest possible migratory route for birds is not always the best route to travel. Substantial research effort has established that birds in captivity are capable of orienting toward the direction of an intended goal, but efforts to examine how free-living birds use navigational information under conditions that potentially make direct flight toward that goal inefficient have been limited in spatiotemporal scales and in the number of individuals observed because of logistical and technological limitations. Using novel and recently developed techniques for analysis of Doppler polarimetric weather surveillance radar data, we examined two impediments for nocturnally migrating songbirds in eastern North America following shortest-distance routes: crosswinds and oceans. We found that migrants in flight often drifted sideways on crosswinds, but most strongly compensated for drift when near the Atlantic coast. Coastal migrants' tendency to compensate for wind drift also increased through the night, while no strong temporal differences were observed at inland sites. Such behaviors suggest that birds migrate in an adaptive way to conserve energy by assessing while airborne the degree to which they must compensate for wind drift.


Asunto(s)
Migración Animal , Pájaros Cantores , Animales , Modelos Teóricos , Tecnología de Sensores Remotos , Estaciones del Año , Viento
20.
Ecol Evol ; 6(19): 7039-7046, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-28725381

RESUMEN

Bioacoustic localization of bird vocalizations provides unattended observations of the location of calling individuals in many field applications. While this technique has been successful in monitoring terrestrial distributions of calling birds, no published study has applied these methods to migrating birds in flight. The value of nocturnal flight call recordings can increase with the addition of three-dimensional position retrievals, which can be achieved with adjustments to existing localization techniques. Using the time difference of arrival method, we have developed a proof-of-concept acoustic microphone array that allows the three-dimensional positioning of calls within the airspace. Our array consists of six microphones, mounted in pairs at the top and bottom of three 10-m poles, arranged in an equilateral triangle with sides of 20 m. The microphone array was designed using readily available components and costs less than $2,000 USD to build and deploy. We validate this technique using a kite-lofted GPS and speaker package, and obtain 60.1% of vertical retrievals within the accuracy of the GPS measurements (±5 m) and 80.4% of vertical retrievals within ±10 m. The mean Euclidian distance between the acoustic retrievals of flight calls and the GPS truth was 9.6 m. Identification and localization of nocturnal flight calls have the potential to provide species-specific spatial characterizations of bird migration within the airspace. Even with the inexpensive equipment used in this trial, low-altitude applications such as surveillance around wind farms or oil platforms can benefit from the three-dimensional retrievals provided by this technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...