Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(21): 213602, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809149

RESUMEN

We demonstrate efficient interfacing of individually trapped single atoms to a nanofiber cavity. The cavity is formed by fabricating photonic crystal structures directly on the nanofiber using femtosecond laser ablation. The single atoms are interfaced to the nanofiber cavity using an optical tweezer based side-illumination trapping scheme. We show that the fluorescence of individual single atoms trapped on the nanofiber cavity can be readily observed in real-time through the fiber guided modes. From the photon statistics measured for different cavity decay rates, the effective coupling rate of the atom-cavity interface is estimated to be 34±2 MHz. This yields a cooperativity of 5.4±0.6 (Purcell factor=6.4±0.6) and a cavity enhanced channeling efficiency as high as 85±2% for a cavity mode with a finesse of 140. The trap lifetime is measured to be 52±5 ms. These results may open new possibilities for deterministic preparation of single atom events for quantum photonics applications on an all-fiber platform.

2.
Opt Lett ; 44(16): 3996-3999, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31415531

RESUMEN

We report the photothermal properties of a photonic crystal nanofiber (PhCN) cavity, which is fabricated using a femtosecond laser ablation technique, under ultra-high vacuum conditions. The results show that by launching a non-resonant guided light, the stopband of the PhCN, along with the cavity modes, can be tuned at a rate of 250 GHz (∼0.5 nm)/mW. Moreover, due to the thermal self-locking effect of a resonant light, a cavity mode with a finesse of 25 can be tuned over a few free spectral ranges using only a few µW of guided light. As an enabling step, we demonstrate a dual-mode locking scheme to thermally stabilize a cavity mode to the atomic line for single atom-based cavity quantum electrodynamics experiments.

3.
Opt Express ; 27(2): 1453-1466, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30696210

RESUMEN

We show that coherent interaction between two sets of multiple resonances leads to exotic resonant effects, such as Fano-type resonances, optical analogue of electro-magnetically induced transparency, and avoided crossing between modes, under different coupling regimes. We experimentally demonstrate such resonant effects in a photonic crystal nanofiber cavity using two sets of cavity modes with orthogonal polarizations. The interaction between the modes arises due to intra-cavity polarization mixing. The observed line shapes are reproduced using a multiple-mode interaction model. Such spectral characteristics may further enhance the capabilities of the nanofiber cavity as a fiber-in-line platform for nanophotonics and quantum photonics applications.

4.
J Vis Exp ; (120)2017 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-28287573

RESUMEN

We present a protocol for fabricating 1-D Photonic Crystal (PhC) cavities on subwavelength-diameter tapered optical fibers, optical nanofibers, using femtosecond laser-induced ablation. We show that thousands of periodic nano-craters are fabricated on an optical nanofiber by irradiating with just a single femtosecond laser pulse. For a typical sample, periodic nano-craters with a period of 350 nm and with diameter gradually varying from 50 - 250 nm over a length of 1 mm are fabricated on a nanofiber with diameter around 450 - 550 nm. A key aspect of such a nanofabrication is that the nanofiber itself acts as a cylindrical lens and focuses the femtosecond laser beam on its shadow surface. Moreover, the single-shot fabrication makes it immune to mechanical instabilities and other fabrication imperfections. Such periodic nano-craters on nanofiber, act as a 1-D PhC and enable strong and broadband reflection while maintaining the high transmission out of the stopband. We also present a method to control the profile of the nano-crater array to fabricate apodized and defect-induced PhC cavities on the nanofiber. The strong confinement of the field, both transverse and longitudinal, in the nanofiber-based PhC cavities and the efficient integration to the fiber networks, may open new possibilities for nanophotonic applications and quantum information science.


Asunto(s)
Rayos Láser , Nanofibras/química , Nanopartículas , Óptica y Fotónica/instrumentación , Cristalización , Diseño de Equipo
5.
Opt Lett ; 42(5): 1003-1006, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248346

RESUMEN

We report the fabrication of a 1.2 cm long cavity directly on a nanofiber using femtosecond laser ablation. The cavity modes with finesse values in the range of 200-400 can enable the "strong-coupling" regime of cavity QED, with high cooperativity of 10-20, for a single atom trapped 200 nm away from the fiber surface [Phys. Rev. A80, 053826 (2009)PLRAAN1050-294710.1103/PhysRevA.80.053826]. Such cavity modes can still maintain the transmission between 40%-60%, suggesting a one-pass intracavity transmission of 99.53%. Other cavity modes, which can enable cooperativity in the range of 3-10, show transmission over 60%-85% and are suitable for fiber-based single-photon sources and quantum nonlinear optics in the "Purcell" regime.

6.
Opt Lett ; 40(17): 4122-5, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26368727

RESUMEN

We demonstrate a method for making precise measurements of the diameter of a tapered optical fiber with a sub-wavelength diameter waist (an optical nanofiber). The essence of the method is to create a composite photonic crystal cavity by mounting a defect-mode grating on an optical nanofiber. The resultant cavity has a resonance wavelength that is sensitive to the nanofiber's diameter, allowing the diameter to be inferred from optical measurements. This method offers a precise, nondestructive, and in situ way to characterize the nanofiber diameter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...