Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glycoconj J ; 38(4): 421-435, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33730261

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) cause a wide range of clinical diseases such as bacteremia and urinary tract infections. The increase of multidrug resistant ExPEC strains is becoming a major concern for the treatment of these infections and E. coli has been identified as a critical priority pathogen by the WHO. Therefore, the development of vaccines has become increasingly important, with the surface lipopolysaccharide constituting a promising vaccine target. This study presents genetic and structural analysis of clinical urine isolates from Switzerland belonging to the serotype O25. Approximately 75% of these isolates were shown to correspond to the substructure O25B only recently described in an emerging clone of E. coli sequence type 131. To address the high occurrence of O25B in clinical isolates, an O25B glycoconjugate vaccine was prepared using an E. coli glycosylation system. The O antigen cluster was integrated into the genome of E. coli W3110, thereby generating an E. coli strain able to synthesize the O25B polysaccharide on a carrier lipid. The polysaccharide was enzymatically conjugated to specific asparagine side chains of the carrier protein exotoxin A (EPA) of Pseudomonas aeruginosa by the PglB oligosaccharyltransferase from Campylobacter jejuni. Detailed characterization of the O25B-EPA conjugate by use of physicochemical methods including NMR and GC-MS confirmed the O25B polysaccharide structure in the conjugate, opening up the possibility to develop a multivalent E. coli conjugate vaccine containing O25B-EPA.


Asunto(s)
Vacunas contra Escherichia coli/inmunología , Escherichia coli/clasificación , Glicoconjugados , Vacunas Conjugadas
2.
Glycobiology ; 29(9): 669-680, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31206156

RESUMEN

Shigellosis remains a major cause of diarrheal disease in developing countries and causes substantial morbidity and mortality in children. Vaccination represents a promising preventive measure to fight the burden of the disease, but despite enormous efforts, an efficacious vaccine is not available to date. The use of an innovative biosynthetic Escherichia coli glycosylation system substantially simplifies the production of a multivalent conjugate vaccine to prevent shigellosis. This bioconjugation approach has been used to produce the Shigella dysenteriae type O1 conjugate that has been successfully tested in a phase I clinical study in humans. In this report, we describe a similar approach for the production of an additional serotype required for a broadly protective shigellosis vaccine candidate. The Shigella flexneri 2a O-polysaccharide is conjugated to introduced asparagine residues of the carrier protein exotoxin A (EPA) from Pseudomonas aeruginosa by co-expression with the PglB oligosaccharyltransferase. The bioconjugate was purified, characterized using physicochemical methods and subjected to preclinical evaluation in rats. The bioconjugate elicited functional antibodies as shown by a bactericidal assay for S. flexneri 2a. This study confirms the applicability of bioconjugation for the S. flexneri 2a O-antigen, which provides an intrinsic advantage over chemical conjugates due to the simplicity of a single production step and ease of characterization of the homogenous monomeric conjugate formed. In addition, it shows that bioconjugates are able to raise functional antibodies against the polysaccharide antigen.


Asunto(s)
Inmunogenicidad Vacunal/inmunología , Antígenos O/inmunología , Shigella flexneri/inmunología , Vacunas Conjugadas/inmunología , Animales , Femenino , Antígenos O/química , Ratas , Ratas Sprague-Dawley , Shigella flexneri/química , Shigella flexneri/crecimiento & desarrollo , Vacunas Conjugadas/química
3.
Nucleic Acids Res ; 41(17): 8266-79, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23907389

RESUMEN

Multiple export receptors passage bound pre-ribosomes through nuclear pore complexes (NPCs) by transiently interacting with the Phe-Gly (FG) meshwork of their transport channels. Here, we reveal how the non-FG interacting yeast mRNA export factor Gly-Leu-FG lethal 2 (Gle2) functions in the export of the large pre-ribosomal subunit (pre-60S). Structure-guided studies uncovered conserved platforms used by Gle2 to export pre-60S: an uncharacterized basic patch required to bind pre-60S, and a second surface that makes non-FG contacts with the nucleoporin Nup116. A basic patch mutant of Gle2 is able to function in mRNA export, but not pre-60S export. Thus, Gle2 provides a distinct interaction platform to transport pre-60S to the cytoplasm. Notably, Gle2's interaction platforms become crucial for pre-60S export when FG-interacting receptors are either not recruited to pre-60S or are impaired. We propose that large complex cargos rely on non-FG as well as FG-interactions for their efficient translocation through the nuclear pore complex channel.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Sitios de Unión , Datos de Secuencia Molecular , Mutación , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
4.
PLoS Genet ; 8(8): e1002915, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22956913

RESUMEN

Nuclear export of mRNAs and pre-ribosomal subunits (pre40S and pre60S) is fundamental to all eukaryotes. While genetic approaches in budding yeast have identified bona fide export factors for mRNAs and pre60S subunits, little is known regarding nuclear export of pre40S subunits. The yeast heterodimeric transport receptor Mex67-Mtr2 (TAP-p15 in humans) binds mRNAs and pre60S subunits in the nucleus and facilitates their passage through the nuclear pore complex (NPC) into the cytoplasm by interacting with Phe-Gly (FG)-rich nucleoporins that line its transport channel. By exploiting a combination of genetic, cell-biological, and biochemical approaches, we uncovered an unanticipated role of Mex67-Mtr2 in the nuclear export of 40S pre-ribosomes. We show that recruitment of Mex67-Mtr2 to pre40S subunits requires loops emanating from its NTF2-like domains and that the C-terminal FG-rich nucleoporin interacting UBA-like domain within Mex67 contributes to the transport of pre40S subunits to the cytoplasm. Remarkably, the same loops also recruit Mex67-Mtr2 to pre60S subunits and to the Nup84 complex, the respective interactions crucial for nuclear export of pre60S subunits and mRNAs. Thus Mex67-Mtr2 is a unique transport receptor that employs a common interaction surface to participate in the nuclear export of both pre-ribosomal subunits and mRNAs. Mex67-Mtr2 could engage a regulatory crosstalk among the three major export pathways for optimal cellular growth and proliferation.


Asunto(s)
Proteínas de Transporte de Membrana , Proteínas Nucleares , Proteínas de Transporte Nucleocitoplasmático , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transporte Activo de Núcleo Celular/genética , Dimerización , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Estructura Terciaria de Proteína , Transporte de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nucleus ; 1(1): 12-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21327099

RESUMEN

The evolutionary conserved protein Sem1/Dss1 is a bona fide subunit of the regulatory particle (RP) of the proteasome and in mammalian cells stabilizes the tumor suppressor protein BRCA2. A recent study from our laboratory has revealed an unexpected non- proteasomal role of Sem1 in mRNA export. We found that Sem1, independent of the RP, is a functional component of the nuclear pore associated TREX-2 complex that is directly involved in the dynamic relocalization of a subset of DNA loci to the nuclear periphery. Like other components of TREX-2, Sem1 is required for proper nuclear export of mRNAs, transcription elongation and preventing transcription-associated genomic instability. Strikingly, Sem1 associates with a third multi-subunit protein complex namely the COP9 signalosome, which is involved in de-neddylation. We propose that Sem1 is a versatile protein that regulates the functional integrity of multiple protein complexes involved in diverse biological pathways.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Acetiltransferasas/metabolismo , Animales , Exodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Oxigenasas de Función Mixta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
6.
J Cell Biol ; 186(6): 863-80, 2009 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-19797079

RESUMEN

Before entering translation, preribosomal particles undergo sequential late maturation steps. In the case of pre-60S particles, these steps involve the release of shuttling maturation factors and transport receptors. In this study, we report a new maturation step in the 60S biogenesis pathway in budding yeast. We show that efficient release of the nucleolar/nuclear ribosomal-like protein Mrt4 (homologous to the acidic ribosomal P-protein Rpp0) from pre-60S particles requires the highly conserved protein Yvh1, which associates only with late pre-60S particles. Cell biological and biochemical analyses reveal that Mrt4 fails to dissociate from late pre-60S particles in yvh1Delta cells, inducing a delay in nuclear pre-ribosomal RNA processing and a pre-60S export defect in yvh1Delta cells. Moreover, we have isolated gain of function alleles of Mrt4 that specifically bypass the requirement for Yvh1 and rescue all yvh1Delta-associated phenotypes. Together, our data suggest that Yvh1-mediated release of Mrt4 precedes cytoplasmic loading of Rpp0 on pre-60S particles and is an obligatory late step toward construction of translation-competent 60S subunits.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Sitios de Unión , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/genética , Regulación Fúngica de la Expresión Génica , Genotipo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fenotipo , Conformación Proteica , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
7.
J Cell Biol ; 184(6): 833-46, 2009 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-19289793

RESUMEN

The evolutionarily conserved protein Sem1/Dss1 is a subunit of the regulatory particle (RP) of the proteasome, and, in mammalian cells, binds the tumor suppressor protein BRCA2. Here, we describe a new function for yeast Sem1. We show that sem1 mutants are impaired in messenger RNA (mRNA) export and transcription elongation, and induce strong transcription-associated hyper-recombination phenotypes. Importantly, Sem1, independent of the RP, is functionally linked to the mRNA export pathway. Biochemical analyses revealed that, in addition to the RP, Sem1 coenriches with components of two other multisubunit complexes: the nuclear pore complex (NPC)-associated TREX-2 complex that is required for transcription-coupled mRNA export, and the COP9 signalosome, which is involved in deneddylation. Notably, targeting of Thp1, a TREX-2 component, to the NPC is perturbed in a sem1 mutant. These findings reveal an unexpected nonproteasomal function of Sem1 in mRNA export and in prevention of transcription-associated genome instability. Thus, Sem1 is a versatile protein that might stabilize multiple protein complexes involved in diverse pathways.


Asunto(s)
Proteínas Fúngicas/metabolismo , Poro Nuclear/metabolismo , Transporte de ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Saccharomycetales/metabolismo , Transporte Activo de Núcleo Celular , Complejo del Señalosoma COP9 , Citidina Desaminasa/metabolismo , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica , Genotipo , Complejos Multiproteicos/metabolismo , Mutación , Péptido Hidrolasas/metabolismo , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Unión al ARN/metabolismo , Recombinación Genética , Ribonucleoproteínas/metabolismo , Saccharomycetales/enzimología , Saccharomycetales/genética , Transcripción Genética
8.
EMBO J ; 28(8): 1099-110, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19300438

RESUMEN

The protein kinase Mps1 is, among others, essential for the spindle assembly checkpoint (SAC). We found that Saccharomyces cerevisiae Mps1 interacts physically with the N-terminal domain of Ndc80 (Ndc80(1-257)), a constituent of the Ndc80 kinetochore complex. Furthermore, Mps1 effectively phosphorylates Ndc80(1-257) in vitro and facilitates Ndc80 phosphorylation in vivo. Mutating 14 of the phosphorylation sites to alanine results in compromised checkpoint signalling upon nocodazole treatment of mutants. Mutating the identical sites to aspartate (to simulate constitutive phosphorylation) causes a metaphase arrest with wild-type-like bipolar kinetochore-microtubule attachment. This arrest is due to a constitutively active SAC and consequently the inviable aspartate mutant can be rescued by disrupting SAC signalling. Therefore, we conclude that a putative Mps1-dependent phosphorylation of Ndc80 is important for SAC activation at kinetochores.


Asunto(s)
Ciclo Celular/fisiología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Alanina/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico/metabolismo , Aurora Quinasas , Genes cdc , Péptidos y Proteínas de Señalización Intracelular , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología
9.
Curr Biol ; 14(13): 1200-7, 2004 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-15242618

RESUMEN

Centriole duplication initiates at the G1-to-S transition in mammalian cells and is completed during the S and G2 phases. The localization of a number of protein kinases to the centrosome has revealed the importance of protein phosphorylation in controlling the centriole duplication cycle. Here we show that the human Polo-like kinase 2 (Plk2) is activated near the G1-to-S transition of the cell cycle. Endogenous and overexpressed HA-Plk2 localize with centrosomes, and this interaction is independent of Plk2 kinase activity. In contrast, the kinase activity of Plk2 is required for centriole duplication. Overexpression of a kinase-deficient mutant under S-phase arrest blocks centriole duplication. Downregulation of endogenous Plk2 with small hairpin RNAs interferes with the ability to reduplicate centrioles. Furthermore, centrioles failed to duplicate during the cell cycle of human fibroblasts and U2OS cells after overexpression of a Plk2 dominant-negative mutant. These results show that Plk2 is a physiological centrosomal protein and that its kinase activity is likely to be required for centriole duplication near the G1-to-S phase transition.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Centriolos/fisiología , Centrosoma/fisiología , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Western Blotting , Proteínas de Ciclo Celular/fisiología , Células Cultivadas/citología , Centrosoma/metabolismo , Ciclina E , Cartilla de ADN , Técnica del Anticuerpo Fluorescente , Células HeLa/citología , Humanos , Mamíferos , Plásmidos/genética , Pruebas de Precipitina , Proteínas Quinasas , Proteínas Serina-Treonina Quinasas/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Xenopus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...