Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Pediatr Res ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368498

RESUMEN

BACKGROUND: A combination of budesonide and surfactant decreases the rates of BPD in infants and lung injury in preterm sheep. Whether this combination will show benefit in the setting of chorioamnionitis and antenatal steroids is not known. METHODS: Ewes at 123 ± 1 day gestational age received intra-amniotic (IA) injections of 10 mg LPS before being randomized to receive either 0.25 mg/kg maternal betamethasone phosphate and acetate or saline by intramuscular (IM) injection at 48 and 24 h prior to delivery at 125 ± 1 day. Lambs (N = 6-9/group) underwent intentionally injurious ventilation for 15 min, then lambs received surfactant mixed with either: (1) saline; or (2) Budesonide 0.25 mg/kg and were ventilated for 4 h. RESULTS: Compared with LPS-exposed animals that received no IM steroid treatment, betamethasone exposed fetuses had improved hemodynamic stability, lung compliance, and ventilation efficiency. The addition of budesonide to surfactant further improved markers of injury and pro-inflammatory cytokine mRNA in both betamethasone IM or no IM lambs exposed to LPS IA. Antenatal betamethasone and IA LPS exposures decreased budesonide levels in the fetal lung and plasma. CONCLUSION: Antenatal betamethasone stabilizes physiologic parameters in LPS treated lambs. Budesonide mixed with surfactant further decreases injury and improves respiratory physiology in betamethasone treated animals. IMPACT: Antenatal betamethasone improved lung and systemic physiology in the setting of intra-amniotic LPS. The addition of budesonide to the surfactant further improved lung function. Budesonide levels in the plasma and lung were lower in lambs exposed to either LPS or LPS and Betamethasone animals, and these findings were not explained by increased esterification in the lungs. The combination of antenatal steroids and budesonide with surfactant had the lowest markers of pro-inflammatory cytokines in the lung of LPS exposed animals.

2.
J Matern Fetal Neonatal Med ; 37(1): 2301651, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38195120

RESUMEN

OBJECTIVE: Extremely preterm infants have low Nuclear Receptor (NR) expression in their developing hepatobiliary systems, as they rely on the placenta and maternal liver for compensation. NRs play a crucial role in detoxification and the elimination of both endogenous and xenobiotic substances by regulating key genes encoding specific proteins. In this study, we utilized an Artificial Placenta Therapy (APT) platform to examine the liver tissue expression of NRs of extremely preterm ovine fetuses. This fetal model, resembling a "knockout placenta," lacks placental and maternal support, while maintaining a healthy extrauterine survival. METHODS: Six ovine fetuses at 95 ± 1 d gestational age (GA; term = ∼150 d)/∼600 g delivery weight were maintained on an APT platform for a period of 120 h (APT Group). Six age-matched, in utero control fetuses were delivered at 99-100 d GA (Control Group). Fetal liver tissue samples and blood samples were collected at delivery from both groups and assessed mRNA expression of NRs and target transporters involved in the hepatobiliary transport system using quantitative PCR. Data were tested for group differences with ANOVA (p < .05 deemed significant). RESULTS: mRNA expression of NRs was identified in both the placenta and the extremely preterm ovine fetal liver. The expression of HNF4α, LRH1, LXR, ESR1, PXR, CAR, and PPARα/γ were significantly elevated in the liver of the APT Group compared to the Control Group. Moreover, target transporters NTCP, OATP1B3, BSEP, and MRP4 were upregulated, whereas MRP2 and MRP3 were unchanged. Although there was no evidence of liver necrosis or apoptotic changes histologically, there was an impact in the fetal liver of the ATP group at the tissue level with a significant increase in TNFα mRNA, a cytokine involved in liver inflammation, and blood elevation of transaminases. CONCLUSION: A number of NRs in the fetal liver were significantly upregulated after loss of placental-maternal support. However, the expression of target transporter genes appeared to be insufficient to compensate role of the placenta and maternal liver and avoid fetal liver damage, potentially due to insufficient excretion of organic anions.


Asunto(s)
Recien Nacido Extremadamente Prematuro , Placenta , Recién Nacido , Embarazo , Lactante , Ovinos , Animales , Femenino , Humanos , Regulación hacia Arriba , Hígado , Feto , Receptores Citoplasmáticos y Nucleares , ARN Mensajero
3.
Am J Obstet Gynecol ; 230(3): 330-339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37734637

RESUMEN

Antenatal steroid therapy is increasingly central to the obstetrical management of women at imminent risk of preterm birth. For women likely to deliver between 24 and 34 weeks' gestation, antenatal steroid therapy is the standard of care, conferring sizable benefits and few risks in high-resource environments when appropriately targeted. Recent studies have focused on antenatal steroid use in periviable and late preterm populations, and in term cesarean deliveries. As a result, antenatal steroid therapy has now been applied from 22 to 39+6 weeks of estimated gestational age. There is also an increased appreciation that the vast majority of randomized control data informing the use of antenatal steroids are derived from predominantly high-resource, White populations. Accordingly, a sizable amount of work has recently been undertaken to test how to safely use antenatal steroids in low- and middle-resource environments, wherein the often high rates of preterm birth make these low-cost, easily administered interventions an attractive proposition. It is likely underappreciated by the obstetrical and neonatal communities that the overall efficacy of antenatal steroid therapy is highly variable (including when preterm risk is accurately assessed), the treatment regimens used are largely arbitrary, dosing is suprapharmacologic for effect, and the benefit-risk balance is significantly and differentially modified by gestation. It is also very likely that the patients consenting to receive these treatments are similarly unaware of the complex balance of potential benefits and harms. Although a small number of follow-up studies present a generally benign picture of long-term antenatal steroid risk, several large, population-based retrospective studies have identified associations between antenatal steroid use, childhood mental disease, and newborn infections that warrant urgent attention. Of particular contemporary importance are emergent efforts to optimize antenatal steroid regimens on the basis of the pharmacokinetics and pharmacodynamics of the agents themselves, the need for better targeting of these potent drugs, and clear articulation of the potential benefits and harms of antenatal steroid use at differing stages of pregnancy and in different delivery contexts.


Asunto(s)
Nacimiento Prematuro , Embarazo , Femenino , Recién Nacido , Humanos , Niño , Nacimiento Prematuro/epidemiología , Nacimiento Prematuro/prevención & control , Nacimiento Prematuro/tratamiento farmacológico , Estudios Retrospectivos , Corticoesteroides , Glucocorticoides/uso terapéutico , Esteroides/uso terapéutico , Atención Prenatal
4.
Biomedicines ; 11(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38001923

RESUMEN

Chorioamnionitis remains a major cause of preterm birth and maternal and neonatal morbidity. We reviewed the current evidence for the diagnostic tests of chorioamnionitis and how this relates to clinical practice today. A comprehensive literature search and review was conducted on chorioamnionitis and intra-uterine inflammation. Data from randomized control trials and systematic reviews were prioritized. This review highlights that sterile inflammation plays an important role in chorioamnionitis and that the current tests for chorioamnionitis including clinical criteria, maternal plasma and vaginal biomarkers lack diagnostic accuracy. Concerningly, these tests often rely on detecting an inflammatory response after damage has occurred to the fetus. Care should be taken when interpreting current investigations for the diagnosis of chorioamnionitis and how they guide obstetric/neonatal management. There is an urgent need for further validation of current diagnostic tests and the development of novel, accurate, minimally invasive tests that detect subclinical intra-uterine inflammation.

5.
Front Physiol ; 14: 1219185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692998

RESUMEN

Introduction: Artificial placenta therapy (APT) is an experimental life support system to improve outcomes for extremely preterm infants (EPI) less than 1,000 g by obviating the need for pulmonary gas exchange. There are presently no long-term survival data for EPI supported with APT. To address this, we aimed to maintain 95d-GA (GA; term-150d) sheep fetuses for up to 2 weeks using our APT system. Methods: Pregnant ewes (n = 6) carrying singleton fetuses underwent surgical delivery at 95d GA. Fetuses were adapted to APT and maintained for up to 2 weeks with constant monitoring of key physiological parameters and extensive time-course blood and urine sampling, and ultrasound assessments. Six age-matched in-utero fetuses served as controls. Data were tested for group differences with ANOVA. Results: Six APT Group fetuses (100%) were adapted to APT successfully. The mean BW at the initiation of APT was 656 ± 42 g. Mean survival was 250 ± 72 h (Max 336 h) with systemic circulation and key physiological parameters maintained mostly within normal ranges. APT fetuses had active movements and urine output constantly exceeded infusion volume over the experiment. At delivery, there were no differences in BW (with edema in three APT group animals), brain weight, or femur length between APT and in-utero Control animals. Organ weights and humerus lengths were significantly reduced in the APT group (p < 0.05). Albumin, IGF-1, and phosphorus were significantly decreased in the APT group (p < 0.05). No cases of positive blood culture were detected. Conclusion: We report the longest use of APT to maintain extremely preterm fetuses to date. Fetal systemic circulation was maintained without infection, but growth was abnormal. This achievement suggests a need to focus not only on cardiovascular stability and health but also on the optimization of fetal growth and organ development. This new challenge will need to be overcome prior to the clinical translation of this technology.

6.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L628-L637, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37697929

RESUMEN

Antenatal steroid therapy is the standard of care for women at imminent risk of preterm delivery. Current dosing regimens use suprapharmacological doses to achieve extended fetal steroid exposures. We aimed to determine the lowest fetal plasma betamethasone concentration sufficient to achieve functional preterm lung maturation. Ewes with single fetuses underwent surgery to install a fetal jugular catheter. Adopting a stepwise design, ewes were randomized to either a saline-only group (negative control group; n = 9) or one of four betamethasone treatment groups. Each betamethasone group fetus received a fetal intravenous infusion to target a constant plasma betamethasone level of either 1) 2 ng/mL (2 ng/mL positive control group, n = 9); 2) 1 ng/mL, (1 ng/mL group, n = 10); 3) 0.5 ng/mL (0.5 ng/mL group, n = 10); or 4) 0.25 ng/mL (0.25 ng/mL group, n = 10). Fetuses were infused for 48 h, delivered, and ventilated. The positive control group, negative control group, and mid-point 0.5 ng/mL group animals were tested first. An interim analysis informed the final betamethasone group tested. Positive control group animals had large, statistically significant improvements in respiratory function. Based on an interim analysis, the 1.0 ng/mL group was studied in favor of the 0.25 ng/mL group. Treatment efficacy was progressively lost at plasma betamethasone concentrations lower than 2 ng/mL. We demonstrated that the acute respiratory benefit conveyed by antenatal steroid exposure in the fetal sheep is progressively lost when constant fetal plasma betamethasone concentrations are reduced below a targeted value of 2 ng/mL.NEW & NOTEWORTHY Lung maturation benefits in preterm lambs were progressively lost when fetal plasma betamethasone concentrations fell below 2 ng/mL. The effective floor threshold for a robust, lung-maturing exposure likely lies between 1 and 2 ng betamethasone per milliliter of plasma. Hypothalamic pituitary adrenal axis signaling and immunocyte populations remained materially disrupted at subtherapeutic steroid concentrations. These data demonstrate the potential to improve antenatal steroid therapy using reduced dose regimens informed by glucocorticoid pharmacokinetics and pharmacodynamics.

7.
Am J Obstet Gynecol MFM ; 5(11): 101124, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37597799

RESUMEN

BACKGROUND: Intraamniotic inflammation is associated with preterm birth, especially in cases occurring before 32 weeks' gestation, and is causally linked with an increased risk for neonatal mortality and morbidity. Targeted anti-inflammatory interventions may assist in improving the outcomes for pregnancies impacted by intrauterine inflammation. Interleukin-1 is a central upstream mediator of inflammation. Accordingly, interleukin-1 is a promising candidate target for intervention therapies and has been targeted previously using the interleukin-1 receptor antagonist, anakinra. Recent studies have shown that the novel, noncompetitive, allosteric interleukin-1 receptor inhibitor, rytvela, partially resolved inflammation associated with preterm birth and fetal injury. In this study, we used a preterm sheep model of chorioamnionitis to investigate the anti-inflammatory efficacy of rytvela and anakinra, administered in the amniotic fluid in the setting of intraamniotic Escherichia coli lipopolysaccharide exposure. OBJECTIVE: We hypothesized that both rytvela and anakinra would reduce lipopolysaccharide-induced intrauterine inflammation and protect the fetal brain. STUDY DESIGN: Ewes with a singleton fetus at 105 days of gestation (term is ∼150 days) were randomized to one of the following groups: (1) intraamniotic injections of 2 mL saline at time=0 and time=24 hours as a negative control group (saline group, n=12); (2) intraamniotic injection of 10 mg Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 2 mL saline at time=0 hours and time=24 hours as an inflammation positive control group (lipopolysaccharide group, n=11); (3) intraamniotic injection of Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 2.5 mg rytvela at time=0 hours and time=24 hours to test the anti-inflammatory efficacy of rytvela (lipopolysaccharide + rytvela group, n=10); or (4) intraamniotic injection of Escherichia coli lipopolysaccharide in 2 mL saline and intraamniotic injections of 100 mg anakinra at time=0 hours and time=24 hours to test the anti-inflammatory efficacy of anakinra (lipopolysaccharide + anakinra group, n=12). Amniotic fluid was sampled at time 0, 24, and 48 hours (ie, at each intervention and at delivery). Fetal umbilical cord blood was collected at delivery for differential blood counts and chemical studies. Inflammation was characterized by the analysis of fetal tissue cytokine and chemokine levels using quantitative polymerase chain reaction, enzyme-linked inmmunosorbent assay, and histology. The primary study outcome of interest was the assessment of anakinra and rytvela brain-protective effects in the setting of Escherichia coli lipopolysaccharide-induced intrauterine inflammation. Secondary outcomes of interest were to assess protection from fetal and intrauterine (ie, amniotic fluid, chorioamnion) inflammation. RESULTS: Intraamniotic administration of lipopolysaccharide caused inflammation of the fetal lung, brain, and chorioamnionitis in preterm fetal sheep. Relative to treatment with saline only in the setting of lipopolysaccharide exposure, intraamniotic administration of both rytvela and anakinra both significantly prevented periventricular white matter injury, microglial activation, and histologic chorioamnionitis. Anakinra showed additional efficacy in inhibiting fetal lung myeloperoxidase activity, but its use was associated with metabolic acidaemia and reduced fetal plasma insulin-like growth factor-1 levels at delivery. CONCLUSION: Intraamniotic administration of rytvela or anakinra significantly inhibited fetal brain inflammation and chorioamnionitis in preterm fetal sheep exposed to intraamniotic lipopolysaccharide. In addition, anakinra treatment was associated with potential negative impacts on the developing fetus.


Asunto(s)
Antiinflamatorios , Corioamnionitis , Enfermedades Neuroinflamatorias , Nacimiento Prematuro , Animales , Femenino , Embarazo , Líquido Amniótico/química , Líquido Amniótico/metabolismo , Antiinflamatorios/administración & dosificación , Antiinflamatorios/análisis , Corioamnionitis/inducido químicamente , Corioamnionitis/tratamiento farmacológico , Corioamnionitis/inmunología , Escherichia coli , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Proteína Antagonista del Receptor de Interleucina 1/análisis , Interleucina-1/análisis , Lipopolisacáridos/análisis , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/prevención & control , Nacimiento Prematuro/inmunología , Nacimiento Prematuro/prevención & control , Receptores de Interleucina-1/análisis , Ovinos , Modelos Animales de Enfermedad , Animales Recién Nacidos
8.
Front Immunol ; 14: 1150208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275869

RESUMEN

Introduction: Chorioamnionitis is common in preterm birth and associated with a higher risk of intestinal inflammation and necrotizing enterocolitis. The intestinal inflammation influences the enteric nervous system development. We hypothesized that inflammation and innervation in the fetal ileum may be modified by chorioamnionitis induced by repeated challenge with lipopolysaccharide and/or preexisting Ureaplasma parvum infection at very low gestational age equivalent to 60% of term. Materials and methods: Time mated ovine fetuses were exposed by intraamniotic injections to chronic Ureaplasma parvum for 24 days and/or lipopolysaccharide for 7 days, 2 days, or 7 & 2 days before delivery at 94 +/-2 days of gestational age (term at approximately 150 days). Intestinal inflammation as well as structural changes of the enteric nervous system were assessed. Results: Lipopolysaccharide exposure increased CD3 and myeloperoxidase-positive cells (p < 0.05). Repetitive exposure to lipopolysaccharide or combined Ureaplasma parvum & lipopolysaccharide exposure increased intestinal inflammation (p < 0.05). The reduction of nuclei of neurons was most significant with repetitive lipopolysaccharide exposures but could be detected in all other intervention groups compared to the control group. Astrocyte-like glial cells increased if exposure to lipopolysaccharide was only 2 days before delivery or chronic exposure to Ureaplasma parvum existed beforehand (p < 0.05). Discussion: After exposure to chorioamnionitis induced by Ureaplasma parvum and/or lipopolysaccharide, inflammatory responses as well as structural changes of the enteric nervous system were more pronounced the longer and the more frequent the exposure to pro-inflammatory stimuli before birth. These changes may cause functional effects of clinical importance.


Asunto(s)
Corioamnionitis , Nacimiento Prematuro , Embarazo , Femenino , Ovinos , Animales , Recién Nacido , Humanos , Lactante , Corioamnionitis/inducido químicamente , Lipopolisacáridos/farmacología , Oveja Doméstica , Feto , Inflamación
9.
Reprod Sci ; 30(11): 3222-3234, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37264260

RESUMEN

Despite widespread use, dosing regimens for antenatal corticosteroid (ACS) therapy are poorly unoptimized. ACS therapy exerts a programming effect on fetal development, which may be associated with an increased risk of cardiovascular disease. Having demonstrated that low-dose steroid therapy is an efficacious means of maturing the preterm lung, we hypothesized that a low-dose steroid exposure would exert fewer adverse functional and transcriptional changes on the fetal heart. We tested this hypothesis using low-dose steroid therapy (10 mg delivered to the ewe over 36 h via constant infusion) and compared cardiac effects with those of a higher dose treatment (30 mg delivered to the ewe over 24 h by intramuscular injection; simulating currently employed clinical ACS regimens). Fetal cardiac function was assessed by ultrasound on the day of ACS treatment initiation. Transcriptomic analyses were performed on fetal myocardial tissue. Relative to saline control, fetuses in the higher-dose clinical treatment group had significantly lower ratios between early diastolic ventricular filling and ventricular filling during atrial systole, and showed the differential expression of myocardial hypertrophy-associated transcripts including ßMHC, GADD45γ, and PPARγ. The long-term implications of these changes remain unstudied. Irrespective, optimizing ACS dosing regimens to maximize respiratory benefit while minimizing adverse effects on key organ systems, such as the heart, offers a means of improving the acute and long-term outcomes associated with this important obstetric therapy.


Asunto(s)
Betametasona , Cardiopatías , Ovinos , Femenino , Embarazo , Animales , Madurez de los Órganos Fetales , Corticoesteroides , Esteroides , Corazón Fetal/diagnóstico por imagen , Cardiopatías/tratamiento farmacológico
10.
BMC Pregnancy Childbirth ; 23(1): 469, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353749

RESUMEN

BACKGROUND: Early prediction of Gestational Diabetes Mellitus (GDM) risk is of particular importance as it may enable more efficacious interventions and reduce cumulative injury to mother and fetus. The aim of this study is to develop machine learning (ML) models, for the early prediction of GDM using widely available variables, facilitating early intervention, and making possible to apply the prediction models in places where there is no access to more complex examinations. METHODS: The dataset used in this study includes registries from 1,611 pregnancies. Twelve different ML models and their hyperparameters were optimized to achieve early and high prediction performance of GDM. A data augmentation method was used in training to improve prediction results. Three methods were used to select the most relevant variables for GDM prediction. After training, the models ranked with the highest Area under the Receiver Operating Characteristic Curve (AUCROC), were assessed on the validation set. Models with the best results were assessed in the test set as a measure of generalization performance. RESULTS: Our method allows identifying many possible models for various levels of sensitivity and specificity. Four models achieved a high sensitivity of 0.82, a specificity in the range 0.72-0.74, accuracy between 0.73-0.75, and AUCROC of 0.81. These models required between 7 and 12 input variables. Another possible choice could be a model with sensitivity of 0.89 that requires just 5 variables reaching an accuracy of 0.65, a specificity of 0.62, and AUCROC of 0.82. CONCLUSIONS: The principal findings of our study are: Early prediction of GDM within early stages of pregnancy using regular examinations/exams; the development and optimization of twelve different ML models and their hyperparameters to achieve the highest prediction performance; a novel data augmentation method is proposed to allow reaching excellent GDM prediction results with various models.


Asunto(s)
Diabetes Gestacional , Embarazo , Femenino , Humanos , Diabetes Gestacional/diagnóstico , Estudios Prospectivos , Sensibilidad y Especificidad , Curva ROC , Aprendizaje Automático
11.
Placenta ; 138: 1-9, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37146534

RESUMEN

INTRODUCTION: Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is important for saturated phosphatidylcholine (Sat-PC) production in the lung. Sat-PC is a critical component of pulmonary surfactant, which maintains low alveolar surface tension, facilitating respiration. Previous studies have reported an association between maternal and fetal LPCAT1 levels and neonatal lung function. Using a sheep model of pregnancy, we investigated a potential correlation between glucocorticoid-induced lung maturation and LPCAT1 mRNA and/or protein levels in the fetal lung, the placenta, the fetal plasma, and the maternal plasma. METHODS: Eighty seven single pregnant ewes received maternal intramuscular injections of betamethasone. A sub-group of five animals had both maternal and fetal catheters installed to allow for sequential sampling from both plasma compartments. Lambs were surgically delivered under terminal anaesthesia between 2 and 8 days after initial ANS treatment, at a gestational age of 121-123 days. Lambs were ventilated for 30 min to determine functional lung maturation before being euthanized for necropsy and sample collection. Fetal lung, placenta, and fetal and maternal plasma samples were used to analyse LPCAT1 gene expression and protein levels. RESULTS: The expression of LPCAT1 mRNA in the fetal lung was significantly corelated to Sat-PC levels at 8 days (R2 = 0.23, p < 0.001) and lung maturation status overall (gas exchange efficiency as determined by measurements of lamb PaCO2 during ventilation, R2 = 0.20, p < 0.001). Similarly, fetal lung LPCAT1 mRNA was also significantly correlated with the individual durability of ANS effects on fetal lung maturation (R2 = 0.20, p < 0.001). Although ANS therapy altered LPCAT1 mRNA expression in the placenta, observed changes were independent of fetal lung maturation outcomes. Neither maternal nor fetal plasma LPCAT1 levels were changed by ANS therapy over the period, including in analysis of serial maternal and fetal samples from chronically catheterised animals. DISCUSSION: LPCAT1 expression in the fetal lung was associated with the durability of glucocorticoid effects on fetal lung maturation. However, LPCAT1 expression in the placenta, the fetal plasma, and the maternal plasma was neither associated with, nor predictive of fetal lung maturation after glucocorticoid treatment in a sheep model of pregnancy.


Asunto(s)
Betametasona , Glucocorticoides , Embarazo , Ovinos , Animales , Femenino , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Betametasona/farmacología , Pulmón/metabolismo , Placenta/metabolismo , ARN Mensajero/metabolismo
12.
J Endocrinol ; 258(2)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37130353

RESUMEN

Being born before 37 weeks' gestation, or preterm birth, is a leading cause of early childhood death and life-long disability. Antenatal steroids (ANS) are recommended for women judged at risk of imminent preterm delivery. The primary intent of ANS treatment is to rapidly mature the fetal lungs to reduce the risk of mortality and lasting morbidity. Despite being used clinically for some 50 years, a large number of uncertainties remain surrounding the use of ANS. In particular, the choice of agent, dose/regimen, and appropriate gestational age range for ANS therapy all remain unclear. Unresolved concerns regarding the potential risk of harms from ANS treatment, especially in light of the modest benefits seen with expanding latepreterm administration, make it increasingly important to optimize the dosing and application of this important and widely used treatment. This review will serve to summarize past data, provide an update on recent developments, and chart a way forward to maximize the overall benefit of this important therapy.


Asunto(s)
Nacimiento Prematuro , Preescolar , Recién Nacido , Femenino , Humanos , Embarazo , Nacimiento Prematuro/prevención & control , Esteroides/efectos adversos , Edad Gestacional
13.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L815-L824, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37096911

RESUMEN

Mechanical ventilation causes airway injury, respiratory epithelial cell proliferation, and lung inflammation in preterm sheep. Whether preterm epithelial cells respond similarly to adult epithelial cells or are altered by mechanical ventilation is unknown. We test the hypothesis that mechanical ventilation alters the responses of preterm airway epithelium to stimulation in culture. Respiratory epithelial cells from the trachea, left mainstem bronchi (LMSB), and distal bronchioles were harvested from unventilated preterm lambs, ventilated preterm lambs, and adult ewes. Epithelial cells were grown in culture or on air-liquid interface (ALI) and challenged with combinations of either media only, lipopolysaccharide (LPS; 10 ng/mL), bronchoalveolar fluid (BALF), or interleukin-13 (IL-13). Cell lysates were evaluated for mRNA changes in cytokine, cell type markers, Notch pathway, and acute phase markers. Mechanical ventilation altered preterm respiratory epithelium cell types. Preterm respiratory epithelial cells responded to LPS in culture with larger IL-8 induction than adults, and mechanical ventilation further increased cytokines IL-1ß and IL-8 mRNA induction at 2 h. IL-8 protein is detected in cell media after LPS stimulation. The addition of BALF from ventilated preterm animals increased IL-1ß mRNA to LPS (fivefold) in both preterm and adult cells and suppressed IL-8 mRNA (twofold) in adults. Preterm respiratory epithelial cells, when grown on ALI, responded to IL-13 with an increase in goblet cell mRNA. Preterm respiratory epithelial cells responded to LPS and IL-13 with responses similar to adults. Mechanical ventilation or exposure to BALF from mechanically ventilated animals alters the responses to LPS.NEW & NOTEWORTHY Preterm lamb respiratory epithelial cells can be extracted from the trachea and bronchi and frozen, and the preterm cells can respond in culture to stimulation with LPS or IL-13. Brief mechanical ventilation changes the distribution and cell type of preterm respiratory cells toward an adult phenotype, and mechanical ventilation alters the response to LPS in culture. Bronchoalveolar lavage fluid from preterm lambs receiving mechanical ventilation also alters unventilated preterm and adult responses to LPS.


Asunto(s)
Interleucina-13 , Respiración Artificial , Animales , Ovinos , Femenino , Respiración Artificial/efectos adversos , Interleucina-13/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Interleucina-8/metabolismo , Células Epiteliales/metabolismo , ARN Mensajero/metabolismo , Pulmón/metabolismo
14.
Am J Obstet Gynecol ; 229(2): 172.e1-172.e12, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37088277

RESUMEN

BACKGROUND: Natural language processing is a form of artificial intelligence that allows human users to interface with a machine without using complex codes. The ability of natural language processing systems, such as ChatGPT, to successfully engage with healthcare systems requiring fluid reasoning, specialist data interpretation, and empathetic communication in an unfamiliar and evolving environment is poorly studied. This study investigated whether the ChatGPT interface could engage with and complete a mock objective structured clinical examination simulating assessment for membership of the Royal College of Obstetricians and Gynaecologists. OBJECTIVE: This study aimed to determine whether ChatGPT, without additional training, would achieve a score at least equivalent to that achieved by human candidates who sat for virtual objective structured clinical examinations in Singapore. STUDY DESIGN: This study was conducted in 2 phases. In the first phase, a total of 7 structured discussion questions were selected from 2 historical cohorts (cohorts A and B) of objective structured clinical examination questions. ChatGPT was examined using these questions and responses recorded in a script. Of note, 2 human candidates (acting as anonymizers) were examined on the same questions using videoconferencing, and their responses were transcribed verbatim into written scripts. The 3 sets of response scripts were mixed, and each set was allocated to 1 of 3 human actors. In the second phase, actors were used to presenting these scripts to examiners in response to the same examination questions. These responses were blind scored by 14 qualified examiners. ChatGPT scores were unblinded and compared with historical human candidate performance scores. RESULTS: The average score given to ChatGPT by 14 examiners was 77.2%. The average historical human score (n=26 candidates) was 73.7 %. ChatGPT demonstrated sizable performance improvements over the average human candidate in several subject domains. The median time taken for ChatGPT to complete each station was 2.54 minutes, well before the 10 minutes allowed. CONCLUSION: ChatGPT generated factually accurate and contextually relevant structured discussion answers to complex and evolving clinical questions based on unfamiliar settings within a very short period. ChatGPT outperformed human candidates in several knowledge areas. Not all examiners were able to discern between human and ChatGPT responses. Our data highlight the emergent ability of natural language processing models to demonstrate fluid reasoning in unfamiliar environments and successfully compete with human candidates that have undergone extensive specialist training.


Asunto(s)
Ginecología , Obstetricia , Humanos , Ginecología/educación , Obstetricia/educación , Inteligencia Artificial , Competencia Clínica , Evaluación Educacional
17.
Physiol Rep ; 10(19): e15477, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36200269

RESUMEN

Treatment with antenatal steroids (ANS) is standard practice for reducing the risk of respiratory distress in the preterm infant. Despite clear overall benefits when appropriately administered, many fetuses fail to derive benefit from ANS therapies. In standardized experiments using a pregnant sheep model, we have demonstrated that around 40% of ANS-exposed lambs did not have functional lung maturation significantly different from that of saline-treated controls. Surfactant protein A is known to play an important role in lung function. In this genotyping study, we investigated the potential correlation between polymorphisms in SFTPA1, messenger RNA and protein levels, and ventilation outcomes in animals treated with ANS. 45 preterm lambs were delivered 48 h after initial ANS therapy and 44 lambs were delivered 8 days after initial ANS therapy. The lambs were ventilated for 30 min after delivery. SFTPA1 mRNA expression in lung tissue was not correlated with arterial blood PaCO2 values at 30 min of ventilation in lambs delivered 48 h after treatment. SFTPA1 protein in lung tissue was significantly correlated with PaCO2 at 30 min of ventilation in lambs ventilated both 48 h and 8 days after ANS treatment. Six different single nucleotide polymorphisms (SNPs) in the Ovis aries SFTPA1 sequence were detected by Sanger Sequencing. No individual SNPs or SNP haplotypes correlated with alterations in PaCO2 at 30 min of ventilation or SFTPA1 protein levels in the lung. For the subset of animals analyzed in the present study, variable lung maturation responses to ANS therapy were not associated with mutations in SFTPA1.


Asunto(s)
Polimorfismo de Nucleótido Simple , Proteína A Asociada a Surfactante Pulmonar , Animales , Animales Recién Nacidos , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Pulmón , Embarazo , Proteína A Asociada a Surfactante Pulmonar/genética , ARN Mensajero , Ovinos , Esteroides , Tensoactivos
18.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012335

RESUMEN

Endometrial stromal cells play an important role in reproductive success, especially in implantation and placentation. Although Mesenchymal stem cells (MSCs) have been studied to assess decidualization disorders in preeclampsia (PE), their role during trophoblast invasion remains unclear. This study aims to determine: (i) whether MSCs isolated from menstrual fluid (MenSCs) from nulliparous, multiparous, and women with a previous history of preeclampsia exhibited different patterns of proliferation and migration and (ii) whether reproductive history (i.e., prior pregnancy or prior history of PE) was able to produce changes in MenSCs, thus altering trophoblast invasion capacity. MenSCs were collected from nulliparous and multiparous women without a history of PE and from non-pregnant women with a history of PE. Proliferation and migration assays were performed on MenSCs with sulforhodamine B and transwell assays, respectively. Trophoblast invasion was analyzed by culturing HTR-8/SVneo trophospheres on a matrigel overlying MenSCs for 72 h at 5% O2, simulating a 3D implantation model. A previous history of pregnancy or PE did not impact the proliferative capacity or migratory behavior of MenSCs. Following exposure to physiological endometrial conditions, MenSCs demonstrated upregulated expression of IGFBP-1 and LIF mRNA, decidualization and window of implantation markers, respectively. The mRNA expression of VIM, NANOG, and SOX2 was upregulated upon trophosphere formation. Relative to co-culture with multiparous MenSCs, co-culture with PE-MenSCs was associated with reduced trophoblast invasion. The findings of this study suggest a potential role for communication between maternal MenSCs and invading trophoblast cells during the implantation process that could be implicated in the etiology of PE.


Asunto(s)
Células Madre Mesenquimatosas , Preeclampsia , Movimiento Celular/genética , Proliferación Celular , Femenino , Humanos , Células Madre Mesenquimatosas/metabolismo , Preeclampsia/metabolismo , Embarazo , ARN Mensajero/metabolismo , Trofoblastos/metabolismo
19.
Am J Obstet Gynecol ; 227(5): 696-704, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35932879

RESUMEN

Antenatal steroid therapy is standard care for women at imminent risk of preterm delivery. When deliveries occur within 7 days of treatment, antenatal steroid therapy reduces the risk of neonatal death and improves preterm outcomes by exerting diverse developmental effects on the fetal organs, in particular the preterm lung and cardiovascular system. There is, however, sizable variability in antenatal steroid treatment efficacy, and an important percentage of fetuses exposed to antenatal steroid therapy do not respond sufficiently to derive benefit. Respiratory distress syndrome, for example, is a central metric of clinical trials to assess antenatal steroid outcomes. In the present analysis, we addressed the concept of antenatal steroid nonresponsiveness, and defined a failed or suboptimal response to antenatal steroids as death or a diagnosis of respiratory distress syndrome following treatment. For deliveries at 24 to 35 weeks' gestation, the number needed to treat to prevent 1 case of respiratory distress syndrome was 19 (95% confidence interval, 14-28). Reflecting gestation-dependent risk, for deliveries at >34 weeks' gestation the number needed to treat was 55 (95% confidence interval, 30-304), whereas for elective surgical deliveries at term this number was 106 (95% confidence interval, 61-421). We reviewed data from clinical and animal studies investigating antenatal steroid therapy to highlight the significant incidence of antenatal steroid therapy nonresponsiveness (ie, residual mortality or respiratory distress syndrome after treatment), and the potential mechanisms underpinning this outcome variability. The origins of this variability may be related to both the manner in which the therapy is applied (ie, the treatment regimen itself) and factors specific to the individual (ie, genetic variation, stress, infection). The primary aims of this review were: (1) to emphasize to the obstetrical and neonatal communities the extent of antenatal steroid response variability and its potential impact; (2) to propose approaches by which antenatal steroid therapy may be better applied to improve overall benefit; and (3) to stimulate further research toward the empirical optimization of this important antenatal therapy.

20.
Am J Obstet Gynecol ; 227(6): 903.e1-903.e16, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35792176

RESUMEN

BACKGROUND: The intramuscular administration of antenatal steroids to women at risk of preterm delivery achieves high maternal and fetal plasma steroid concentrations, which are associated with adverse effects and may reduce treatment efficacy. We have demonstrated that antenatal steroid efficacy is independent of peak maternofetal steroid levels once exposure is maintained above a low threshold. OBJECTIVE: This study aimed to test, using a sheep model of pregnancy, whether the low-dose antenatal steroid regimen proposed as part of the Antenatal Corticosteroids for Improving Outcomes in Preterm Newborns trial would achieve preterm lung maturation equivalent to that of the existing World Health Organization dexamethasone treatment regimen, but with reduced risk of adverse outcomes. STUDY DESIGN: Following ethical review and approval, date-mated ewes with single fetuses received intramuscular injections of either (1) four 6-mg maternal intramuscular injections of dexamethasone phosphate every 12 hours (n=22), (2) 4 2-mg maternal intramuscular injections of betamethasone phosphate every 12 hours (n=21), or (3) 4 2-mL maternal intramuscular injections of saline every 12 hours (n=16). Of note, 48 hours after first injection, (124±1 day), lambs were delivered, ventilated for 30 minutes, and euthanized for sampling. Arterial blood gas, respiratory, hematological, and biochemical data were analyzed for between-group differences with analysis of variance according to distribution and variance, with P<.05 taken as significant. RESULTS: After 30 minutes of ventilation, lambs from both steroid-treated groups had significant and equivalent improvements in lung function relative to saline control (P<.05). There was no significant difference in arterial blood pH, pO2, pCO2, lung compliance, ventilator efficiency index, or lung volume at necropsy with a static pressure of 40 cmH2O. The messenger RNA expression of surfactant protein (Sp)a, Spb, Spc, Spd, aquaporin (Aqp)1, Aqp5, and sodium channel epithelial 1 subunit beta (Scnn1b) was equivalent between both steroid groups. Maternal and fetal plasma neutrophil, glucose, and fetal plasma C-peptide levels were significantly elevated in the dexamethasone group, relative to the betamethasone group. Fetal plasma insulin-like growth factor 1 was significantly reduced in the dexamethasone group compared with the betamethasone group (P<0.05). Fetal adrenocorticotropic hormone (r=0.53), maternal glucose value (r=-0.52), and fetal glucose values (r=-0.42) were correlated with maternal weight in the betamethasone group (P<.05), whereas fetal pCO2 and pO2 were not correlated. There was no significant difference between male and female lamb outcomes in any groups for any of the items evaluated. CONCLUSION: This study reported that in preterm lambs, a low-dose treatment regimen of 8 mg betamethasone achieves lung maturation equivalent to that of a 24-mg dexamethasone-based regimen, but with smaller perturbations to the maternofetal hypothalamic-pituitary-adrenal axis. These data suggested that given steroid pharmacokinetic differences between sheep and humans, a betamethasone dose of 2 mg may remain above the minimum dose necessary for robust maturation of the preterm lung. Maternal weight-adjusted betamethasone doses might also be a key to reducing perturbations to the maternofetal hypothalamic-pituitary-adrenal axis.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Ovinos , Femenino , Animales , Recién Nacido , Masculino , Embarazo , Humanos , Betametasona , Glucocorticoides , Pulmón/metabolismo , Dexametasona , Organización Mundial de la Salud , Glucosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...