Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photochem Photobiol ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433456

RESUMEN

Nucleic acids, lipids, and other cell components can be found within different types of extracellular vesicles (EVs), which include apoptotic bodies (ABs), large extracellular vesicles (LEVs), and small extracellular vesicles (SEVs). Release of LEVs from cells can be reduced by genetic or pharmacological inhibition of the enzyme acid sphinogomyelinase (aSMase), and indeed several studies have demonstrated a role for the clinically approved aSMase inhibitor imipramine in blocking LEV release, including in response to UVB exposure. Given that exposure of keratinocytes to UVB radiation results in the generation of UVR photoproducts in DNA that can subsequently be found in association with ABs and SEVs, we examined how imipramine impacts the release of extracellular DNA containing UVR photoproducts at an early time point after UVR exposure. Using several different model systems, including cultured keratinocytes in vitro, discarded human surgical skin ex vivo, and skin biopsies obtained from treated human subjects, these pilot studies suggest that imipramine treatment stimulates the release of CPD-containing, SEV-associated DNA. These surprising findings indicate that LEV and SEV generation pathways could be linked in UVB-irradiated cells and that imipramine may exacerbate the systemic effects of extracellular UVR-damaged DNA throughout the body.

2.
Photochem Photobiol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459721

RESUMEN

The nucleotide excision repair (NER) system removes UV photoproducts from genomic DNA and is controlled by the circadian clock. Given that small-molecule compounds have been developed to target various clock proteins, we examined whether the cryptochrome inhibitor KS15 and REV-ERB antagonist SR8278 could modulate keratinocyte responses to UV radiation in vitro. We observed that though SR8278 promoted cell viability in UVB-irradiated cells, it had little effect on NER or on the expression of the clock-regulated NER factor XPA. Rather, we found that both KS15 and SR8278 absorb light within the UV spectrum to limit initial UV photoproduct formation in DNA. Moreover, SR8278 promoted UVB viability even in cells in which the core circadian clock protein BMAL1 was disrupted, which indicates that SR8278 is likely acting via other REV-ERB transcriptional targets. We further observed that SR8278 sensitized keratinocytes to light sources containing primarily UVA wavelengths of light likely due to the generation of toxic reactive oxygen species. Though other studies have demonstrated beneficial effects of SR8278 in other model systems, our results here suggest that SR8278 has limited utility for UV photoprotection in the skin and will likely cause phototoxicity in humans or mammals exposed to solar radiation.

3.
STAR Protoc ; 5(1): 102838, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244199

RESUMEN

UV radiation induces the formation of adducts in genomic DNA within cells that are later found to be present in cell-free fractions associated with extracellular vesicles (EVs) outside of cells. Here, we present a protocol for isolating UV photoproducts in extracellular DNA released from UVB-irradiated cells via differential centrifugation. We then detail steps for monitoring the DNA adducts using DNA immunoblotting. This protocol can be applied for detection of DNA adducts in EVs from cell culture and skin explant models. For complete details on the use and execution of this protocol, please refer to Carpenter et al.1.


Asunto(s)
Aductos de ADN , Daño del ADN , ADN/genética , Rayos Ultravioleta/efectos adversos , Piel
4.
Photochem Photobiol ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287748

RESUMEN

Photosensitivity can be due to numerous causes. The photosensitivity associated with deficiency of xeroderma pigmentosum type A (XPA) has been previously shown to be associated with excess levels of the lipid mediator platelet-activating factor (PAF) generated by the keratinocyte. As PAF has been reported to trigger the production of subcellular microvesicle particles (MVP) due to the enzyme acid sphingomyelinase (aSMase), the goal of these studies was to discern if PAF and aSMase could serve as therapeutic targets for the XPA deficiency photosensitivity. HaCaT keratinocytes lacking XPA generated greater levels of MVP in comparison to control cells. Mice deficient in XPA also generated enhanced MVP levels in skin and in plasma in response to UV radiation. Use of a genetic strategy with mice deficient in both XPA and PAF receptors revealed that these mice generated less MVP release as well as decreased skin erythema and cytokine release compared to XPA knockout mice alone. Finally, the aSMase inhibitor imipramine blocked UV-induced MVP release in HaCaT keratinocytes, as well as XPA knockout mice. These studies support the concept that the photosensitivity associated with XPA involves PAF- and aSMase-mediated MVP release and provides a potential pharmacologic target in treating this form of photosensitivity.

6.
J Invest Dermatol ; 142(11): 3062-3070.e3, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35691362

RESUMEN

Solar radiation induces the formation of cyclobutane pyrimidine dimers (CPDs) and other UV photoproducts in the genomic DNA of epidermal keratinocytes. Although CPDs have been detected in urine from UV- and sun-exposed individuals, the pathway by which they arrive there and the mechanisms by which UV-induced DNA damage in the skin has systemic effects throughout the body are not clear. Consistent with previous reports that DNA associates with small extracellular vesicles that are released from a variety of cell types, we observed that a small fraction of CPDs formed in genomic DNA after UVB exposure can later be detected in the culture medium. These extracellular CPDs are found within large fragments of histone-associated DNA and are released in a time- and UVB dose‒dependent manner. Moreover, studies with both cultured cells and human skin explants revealed that CPD release into the extracellular environment is blocked by caspase inhibition, which indicates a role for apoptotic signaling in CPD release from UVB-irradiated keratinocytes. Finally, we show that this released CPD-containing DNA can be taken up by other keratinocytes. These results therefore provide possible mechanisms for the export of damaged DNA from UVB-irradiated cells and for systemic effects of UVB exposure throughout the body.


Asunto(s)
Caspasas , Dímeros de Pirimidina , Humanos , Dímeros de Pirimidina/efectos de la radiación , Caspasas/metabolismo , Histonas/metabolismo , Rayos Ultravioleta/efectos adversos , Queratinocitos/metabolismo , Daño del ADN , ADN/metabolismo
7.
Photochem Photobiol ; 98(6): 1372-1378, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35348223

RESUMEN

The polymethoxylated flavonoid nobiletin has been shown to suppress inflammatory responses to UVB radiation and to enhance circadian rhythms. Because expression of the core nucleotide excision repair (NER) factor XPA and the rate of removal of UV photoproducts from DNA are regulated by the circadian clock, we investigated whether the beneficial effects of nobiletin in UVB-exposed cells could be due in part to enhanced NER. Although nobiletin limited UVB-irradiated human keratinocytes from undergoing cell death, we found that this enhanced survival was not associated with increased NER or XPA expression. Instead, nobiletin reduced initial UV photoproduct formation and promoted a G1 cell cycle arrest. We then examined the implications of this findings for exposures to solar radiation through use of a solar simulated light (SSL) source that contains primarily UVA radiation. In striking contrast to the results obtained with UVB radiation, nobiletin instead sensitized keratinocytes to both the SSL and a more defined UVA radiation source. This enhanced cell death was correlated with a photochemical change in nobiletin absorption spectrum and the production of reactive oxygen species. We conclude that nobiletin is unlikely to be a useful compound for protecting keratinocytes against the harmful effects of solar UV radiation.


Asunto(s)
Flavonoides , Rayos Ultravioleta , Humanos , Supervivencia Celular , Flavonoides/farmacología , Flavonoides/metabolismo , Queratinocitos/efectos de la radiación
8.
Nucleic Acids Res ; 50(7): 3974-3984, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35357486

RESUMEN

The nucleotide excision repair (NER) machinery removes UV photoproducts from DNA in the form of small, excised damage-containing DNA oligonucleotides (sedDNAs) ∼30 nt in length. How cells process and degrade these byproducts of DNA repair is not known. Using a small scale RNA interference screen in UV-irradiated human cells, we identified TREX1 as a major regulator of sedDNA abundance. Knockdown of TREX1 increased the level of sedDNAs containing the two major UV photoproducts and their association with the NER proteins TFIIH and RPA. Overexpression of wild-type but not nuclease-inactive TREX1 significantly diminished sedDNA levels, and studies with purified recombinant TREX1 showed that the enzyme efficiently degrades DNA located 3' of the UV photoproduct in the sedDNA. Knockdown or overexpression of TREX1 did not impact the overall rate of UV photoproduct removal from genomic DNA or cell survival, which indicates that TREX1 function in sedDNA degradation does not impact NER efficiency. Taken together, these results indicate a previously unknown role for TREX1 in promoting the degradation of the sedDNA products of the repair reaction. Because TREX1 mutations and inefficient DNA degradation impact inflammatory and immune signaling pathways, the regulation of sedDNA degradation by TREX1 may contribute to photosensitive skin disorders.


Asunto(s)
Reparación del ADN , Exodesoxirribonucleasas/metabolismo , Oligonucleótidos , Fosfoproteínas/metabolismo , Rayos Ultravioleta , Daño del ADN , Humanos , Oligonucleótidos/metabolismo
9.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-36606083

RESUMEN

Several studies have indicated a role for cathepsin L (CTSL) proteolytic activity in the nucleus under distinct cellular conditions, including during differentiation, senescence, and quiescence. Here we show that addition of CTSL inhibitors to a cell lysis buffer prevents the cleavage of several nuclear proteins during the lysis of quiescent human cells, including proteins previously thought to have functional relevance in other cell and tissue contexts. These findings suggest that care should be taken to use CTSL inhibitors when lysing cells and tissues containing high levels of CTSL protein to differentiate proteolysis that occurs in vivo versus artifactually in vitro.

10.
DNA Repair (Amst) ; 109: 103260, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883264

RESUMEN

The xeroderma pigmentosum group A (XPA) protein plays an essential role in the removal of UV photoproducts and other bulky lesions from DNA as a component of the nucleotide excision repair (NER) machinery. Using cell lysates prepared from confluent cultures of human cells and from human skin epidermis, we observed an additional XPA antibody-reactive band on immunoblots that was approximately 3-4 kDa smaller than the native, full-length XPA protein. Biochemical studies revealed this smaller molecular weight XPA species to be due to proteolysis at the C-terminus of the protein, which negatively impacted the ability of XPA to interact with the NER protein TFIIH. Further work identified the endopeptidase cathepsin L, which is expressed at higher levels in quiescent cells, as the protease responsible for cleaving XPA during cell lysis. These results suggest that supplementation of lysis buffers with inhibitors of cathepsin L is important to prevent cleavage of XPA during lysis of confluent cells.


Asunto(s)
Catepsina L/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Catepsina L/antagonistas & inhibidores , Células Cultivadas , Reparación del ADN , Humanos , Proteolisis , Proteína de la Xerodermia Pigmentosa del Grupo A/aislamiento & purificación
11.
JID Innov ; 1(3): 100023, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34909723

RESUMEN

Spironolactone (SP) is used to treat a variety of disparate disease states ranging from heart failure to acne through antagonism of the mineralocorticoid and androgen receptors. Although normally taken as an oral medication, recent studies have explored the topical application of SP onto the skin. However, because SP induces the proteolytic degradation of the XPB protein, which plays critical roles in DNA repair and transcription, there may be safety concerns with the use of topical SP. In this study, we show that the topical application of a high concentration of either SP or its metabolite canrenone onto human skin ex vivo lowers XPB protein levels and induces toxic responses in the epidermis. Interestingly, although SP and canrenone both inhibit cell proliferation, induce replication stress responses, and stimulate apoptotic signaling at high concentrations in cultured keratinocytes in vitro, these effects were not correlated with XPB protein loss. Thus, high concentrations of SP and canrenone likely inhibit cell proliferation and induce toxicity through additional mechanisms to XPB proteolytic degradation. This work suggests that care may need to be taken when using high concentrations of SP directly on human skin.

12.
Nutrients ; 13(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34836359

RESUMEN

Dermal fibroblasts provide structural support by producing collagen and other structural/support proteins beneath the epidermis. Fibroblasts also produce insulin-like growth factor-1 (IGF-1), which binds to the IGF-1 receptors (IGF-1Rs) on keratinocytes to activate signaling pathways that regulate cell proliferation and cellular responses to genotoxic stressors like ultraviolet B radiation. Our group has determined that the lack of IGF-1 expression due to fibroblast senescence in the dermis of geriatric individuals is correlated with an increased incidence of skin cancer. The present studies tested the hypothesis that pro-energetics creatine monohydrate (Cr) and nicotinamide (NAM) can protect normal dermal human fibroblasts (DHF) against experimentally induced senescence. To that end, we used an experimental model of senescence in which primary DHF are treated with hydrogen peroxide (H2O2) in vitro, with senescence measured by staining for beta-galactosidase activity, p21 protein expression, and senescence associated secretory phenotype cytokine mRNA levels. We also determined the effect of H2O2 on IGF-1 mRNA and protein expression. Our studies indicate that pretreatment with Cr or NAM protects DHF from the H2O2-induced cell senescence. Treatment with pro-energetics post-H2O2 had no effect. Moreover, these agents also inhibited reactive oxygen species generation from H2O2 treatment. These studies suggest a potential strategy for protecting fibroblasts in geriatric skin from undergoing stress-induced senescence, which may maintain IGF-1 levels and therefore limit carcinogenesis in epidermal keratinocytes.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Creatina/farmacología , Peróxido de Hidrógeno/efectos adversos , Niacinamida/farmacología , Oxidantes/efectos adversos , Anciano , Dermis/citología , Fibroblastos/efectos de los fármacos , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , ARN Mensajero/metabolismo , Fenotipo Secretor Asociado a la Senescencia , Envejecimiento de la Piel/efectos de los fármacos
13.
Sci Rep ; 11(1): 17997, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504274

RESUMEN

Nucleotide excision repair (NER) and cell cycle checkpoints impact the ability of the anti-cancer drug cisplatin to inhibit cell proliferation and induce cell death. Genetic studies have shown that both NER and cell cycle progression are impacted by the circadian clock, which has emerged as a novel pharmacological target for the treatment of various disease states. In this study, cultured human cell lines were treated with combinations of cisplatin and the circadian clock modulating compounds KS15 and SR8278, which enhance circadian clock transcriptional output by inhibiting the activities of the cryptochrome and REV-ERB proteins, respectively. Treatment of cells with KS15 and SR8278 protected cells against the anti-proliferative effects of cisplatin and increased the expression of NER factor XPA and cell cycle regulators Wee1 and p21 at the mRNA and protein level. Correlated with these molecular changes, KS15 and SR8278 treatment resulted in fewer unrepaired cisplatin-DNA adducts in genomic DNA and a higher fraction of cells in the G1 phase of the cell cycle. Thus, the use of pharmacological agents targeting the circadian clock could be a novel approach to modulate the responses of normal and cancer cells to cisplatin chemotherapy regimens.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Criptocromos/antagonistas & inhibidores , Aductos de ADN/efectos de los fármacos , Aductos de ADN/farmacología , Reparación del ADN/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Células A549 , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relojes Circadianos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Células HaCaT , Humanos , Isoquinolinas/farmacología , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Tiofenos/farmacología , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
14.
J Clin Invest ; 131(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34428179

RESUMEN

BACKGROUNDThe loss of insulin-like growth factor 1 (IGF-1) expression in senescent dermal fibroblasts during aging is associated with an increased risk of nonmelanoma skin cancer (NMSC). We tested how IGF-1 signaling can influence photocarcinogenesis during chronic UVB exposure to determine if fractionated laser resurfacing (FLR) of aged skin, which upregulates dermal IGF-1 levels, can prevent the occurrence of actinic keratosis (AK) and NMSC.METHODSA human skin/immunodeficient mouse xenografting model was used to test the effects of a small molecule inhibitor of the IGF-1 receptor on chronic UVB radiation. Subsequently, the durability of FLR treatment was tested on a cohort of human participants aged 65 years and older. Finally, 48 individuals aged 60 years and older with considerable actinic damage were enrolled in a prospective randomized clinical trial in which they underwent a single unilateral FLR treatment of one lower arm. Numbers of AKs/NMSCs were recorded on both extremities for up to 36 months in blinded fashion.RESULTSXenografting studies revealed that chronic UVB treatment with a topical IGF-1R inhibitor resulted in a procarcinogenic response. A single FLR treatment was durable in restoring appropriate UVB response in geriatric skin for at least 2 years. FLR resulted in sustained reduction in numbers of AKs and decreased numbers of NMSCs in the treated arm (2 NMSCs) versus the untreated arm (24 NMSCs).CONCLUSIONThe elimination of senescent fibroblasts via FLR reduced the procarcinogenic UVB response of aged skin. Thus, wounding therapies are a potentially effective prophylaxis for managing high-risk populations.TRIAL REGISTRATIONClinicalTrials.gov (NCT03906253).FUNDINGNational Institutes of Health, Veterans Administration.


Asunto(s)
Queratosis Actínica/prevención & control , Terapia por Láser/métodos , Envejecimiento de la Piel/efectos de la radiación , Neoplasias Cutáneas/prevención & control , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/fisiología , Rayos Ultravioleta
15.
Int J Mol Sci ; 22(11)2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34204077

RESUMEN

Skin cancers are growing in incidence worldwide and are primarily caused by exposures to ultraviolet (UV) wavelengths of sunlight. UV radiation induces the formation of photoproducts and other lesions in DNA that if not removed by DNA repair may lead to mutagenesis and carcinogenesis. Though the factors that cause skin carcinogenesis are reasonably well understood, studies over the past 10-15 years have linked the timing of UV exposure to DNA repair and skin carcinogenesis and implicate a role for the body's circadian clock in UV response and disease risk. Here we review what is known about the skin circadian clock, how it affects various aspects of skin physiology, and the factors that affect circadian rhythms in the skin. Furthermore, the molecular understanding of the circadian clock has led to the development of small molecules that target clock proteins; thus, we discuss the potential use of such compounds for manipulating circadian clock-controlled processes in the skin to modulate responses to UV radiation and mitigate cancer risk.


Asunto(s)
Carcinogénesis/patología , Relojes Circadianos/fisiología , Neoplasias Cutáneas/fisiopatología , Fenómenos Fisiológicos de la Piel , Piel/patología , Piel/fisiopatología , Animales , Carcinogénesis/efectos de la radiación , Relojes Circadianos/efectos de la radiación , Humanos , Factores de Riesgo , Piel/efectos de la radiación , Fenómenos Fisiológicos de la Piel/efectos de la radiación
16.
Pigment Cell Melanoma Res ; 34(5): 955-965, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160901

RESUMEN

Solar ultraviolet B radiation (UVB) is one of the leading causes of various skin conditions, including photoaging, sunburn erythema, and melanoma. As a protective response, the skin has inbuilt defense mechanisms, including DNA repair, cell cycle, apoptosis, and melanin synthesis. Though DNA repair, cell cycle, and apoptosis are clock controlled, the circadian mechanisms associated with melanin synthesis are not well understood. Using human melanocytes and melanoma cells under synchronized clock conditions, we observed that the microphthalmia-associated transcription factor (MITF), a rate-limiting protein in melanin synthesis, is expressed rhythmically with 24-hr periodicity in the presence of circadian clock protein, BMAL1. Furthermore, we demonstrated that BMAL1 binds to the promoter region of MITF and transcriptionally regulates its expression, which positively influences melanin synthesis. Finally, we report that an increase in melanin levels due to BMAL1 overexpression protects human melanoma cells from UVB. In conclusion, our studies provide novel insights into the mechanistic role of the circadian clock in melanin synthesis and protection against UVB-mediated DNA damage and genomic instability.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Regulación Neoplásica de la Expresión Génica , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteínas de Neoplasias/metabolismo , Factores de Transcripción ARNTL/genética , Animales , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Proteínas de Neoplasias/genética
17.
J Clin Invest ; 131(10)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33830943

RESUMEN

A complete carcinogen, ultraviolet B (UVB) radiation (290-320 nm), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator platelet-activating factor (PAF). A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF receptor (PAFR) activation in keratinocytes induce the release of large numbers of microvesicle particles (MVPs; extracellular vesicles ranging from 100 to 1000 nm in size). MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVPs) are dependent on the keratinocyte PAFR. Here, we used both pharmacologic and genetic approaches in cells and mice to show that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Our discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVPs leaving the keratinocyte can be found systemically in mice and humans following UVB exposure. Moreover, we found that UVB-MVPs contained bioactive contents including PAFR agonists that allowed them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression.


Asunto(s)
Micropartículas Derivadas de Células/inmunología , Tolerancia Inmunológica/efectos de la radiación , Queratinocitos/inmunología , Rayos Ultravioleta , Animales , Línea Celular , Micropartículas Derivadas de Células/genética , Femenino , Humanos , Ratones , Ratones Noqueados , Factor de Activación Plaquetaria/genética , Factor de Activación Plaquetaria/inmunología , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/inmunología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/inmunología
18.
J Biol Chem ; 296: 100570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33753168

RESUMEN

Nonmelanoma skin cancers occur primarily in individuals over the age of 60 and are characterized by an abundance of ultraviolet (UV) signature mutations in keratinocyte DNA. Though geriatric skin removes UV photoproducts from DNA less efficiently than young adult skin, it is not known whether the utilization of other prosurvival but potentially mutagenic DNA damage tolerance systems such as translesion synthesis (TLS) is altered in older individuals. Using monoubiquitination of the replicative DNA polymerase clamp protein PCNA (proliferating cell nuclear antigen) as a biochemical marker of TLS pathway activation, we find that UVB exposure of the skin of individuals over the age of 65 results in a higher level of PCNA monoubiquitination than in the skin of young adults. Furthermore, based on previous reports showing a role for deficient insulin-like growth factor-1 (IGF-1) signaling in altered UVB DNA damage responses in geriatric human skin, we find that both pharmacological inhibition of the IGF-1 receptor (IGF-1R) and deprivation of IGF-1 potentiate UVB-induced PCNA monoubiquitination in both human skin ex vivo and keratinocytes in vitro. Interestingly, though the TLS DNA polymerase Pol eta can accurately replicate the major photoproducts induced in DNA by UV radiation, we find that it fails to accumulate on chromatin in the absence of IGF-1R signaling and that this phenotype is correlated with increased mutagenesis in keratinocytes in vitro. Thus, altered IGF-1/IGF-1R signaling in geriatric skin may predispose epidermal keratinocytes to carry out a more mutagenic form of DNA synthesis following UVB exposure.


Asunto(s)
Envejecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Piel/metabolismo , Piel/efectos de la radiación , Ubiquitinación/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Anciano , Envejecimiento/efectos de la radiación , Daño del ADN , Reparación del ADN/efectos de la radiación , Femenino , Humanos , Masculino , Transducción de Señal/efectos de la radiación , Piel/citología
19.
Front Oncol ; 11: 813132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071017

RESUMEN

The occurrence of non-melanoma skin cancer (NMSC) is closely linked with advanced age and ultraviolet-B (UVB) exposure. More specifically, the development of NMSC is linked to diminished insulin-like growth factor-1 (IGF-1) signaling from senescent dermal fibroblasts in geriatric skin. Consequently, keratinocyte IGF-1 receptor (IGF-1R) remains inactive, resulting in failure to induce appropriate protective responses including DNA repair and cell cycle checkpoint signaling. This allows UVB-induced DNA damage to proliferate unchecked, which increases the likelihood of malignant transformation. NMSC is estimated to occur in 3.3 million individuals annually. The rising incidence results in increased morbidity and significant healthcare costs, which necessitate identification of effective treatment modalities. In this review, we highlight the pathogenesis of NMSC and discuss the potential of novel preventative therapies. In particular, wounding therapies such as dermabrasion, microneedling, chemical peeling, and fractionated laser resurfacing have been shown to restore IGF-1/IGF-1R signaling in geriatric skin and suppress the propagation of UVB-damaged keratinocytes. This wounding response effectively rejuvenates geriatric skin and decreases the incidence of age-associated NMSC.

20.
Photodermatol Photoimmunol Photomed ; 36(6): 433-440, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32786098

RESUMEN

The use of the calcineurin inhibitors (CNI) cyclosporine (CsA) and tacrolimus remains a cornerstone in post-transplantation immunosuppression. Although these immunosuppressive agents have revolutionized the field of transplantation medicine, its increased skin cancer risk poses a major concern. A key contributor to this phenomenon is a reduced capacity to repair DNA damage caused by exposure to ultraviolet (UV) wavelengths of sunlight. CNIs decrease DNA repair by mechanisms that remain to be fully explored. Though CsA is known to decrease the abundance of key DNA repair enzymes, less is known about how tacrolimus yields this effect. CNIs hold the capacity to inhibit both of the main catalytic calcineurin isoforms (CnAα and CnAß). However, it is unknown which isoform regulates UV-induced DNA repair, which is the focus of this review. It is with hope that this insight spurs investigative efforts that conclusively addresses these gaps in knowledge. Additionally, this research also raises the possibility that newer CNIs can be developed that effectively blunt the immune response while mitigating the incidence of skin cancers with immunosuppression.


Asunto(s)
Inhibidores de la Calcineurina/efectos adversos , Calcineurina , Reparación del ADN/efectos de los fármacos , Neoplasias Cutáneas/inducido químicamente , Animales , Inhibidores de la Calcineurina/farmacología , Ciclosporina/efectos adversos , Ciclosporina/farmacología , Daño del ADN , Humanos , Isoformas de Proteínas/efectos de los fármacos , Tacrolimus/efectos adversos , Tacrolimus/farmacología , Rayos Ultravioleta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...