Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 13(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38004323

RESUMEN

A method was previously developed to identify participant-specific parameters in a model of trabecular bone adaptation from longitudinal computed tomography (CT) imaging. In this study, we use these numerical methods to estimate changes in astronaut bone health during the distinct phases of spaceflight and recovery on Earth. Astronauts (N = 16) received high-resolution peripheral quantitative CT (HR-pQCT) scans of their distal tibia prior to launch (L), upon their return from an approximately six-month stay on the international space station (R+0), and after six (R+6) and 12 (R+12) months of recovery. To model trabecular bone adaptation, we determined participant-specific parameters at each time interval and estimated their bone structure at R+0, R+6, and R+12. To assess the fit of our model to this population, we compared static and dynamic bone morphometry as well as the Dice coefficient and symmetric distance at each measurement. In general, modeled and observed static morphometry were highly correlated (R2> 0.94) and statistically different (p < 0.0001) but with errors close to HR-pQCT precision limits. Dynamic morphometry, which captures rates of bone adaptation, was poorly estimated by our model (p < 0.0001). The Dice coefficient and symmetric distance indicated a reasonable local fit between observed and predicted bone volumes. This work applies a general and versatile computational framework to test bone adaptation models. Future work can explore and test increasingly sophisticated models (e.g., those including load or physiological factors) on a participant-specific basis.

2.
Int J Numer Method Biomed Eng ; 37(10): e3515, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34313396

RESUMEN

Simulated bone adaptation is framed as an interface evolution problem. The interface is extracted from a high-resolution computed tomography (CT) image of trabecular bone microarchitecture and modified by the level set equation. A model and its parameters determine the bone adaptation rate and thus the bone structure at any future time. This study develops an inverse problem and solver to identify model parameters from multiple high-resolution CT images of bone within the level set framework. We demonstrate the technique on a model of advection and mean curvature flow, termed curvature-driven adaptation. The inverse solver uses two CT scans to estimate model parameters, which map the bone surface from one image to the next. The solver was tested with synthetic images of bone changing according to the curvature-driven model with known model parameters. The algorithm recovered known model parameters excellently (R2 > .99, p < .001). A grid search indicated that the estimated model parameters were insensitive to hyper-parameter selection for learning rate 1e-5≤η≤ 5e-5 and gradient scaling factor 5e-5≤γ≤ 5e-4 . Finally, we tested the algorithm's sensitivity to salt-and-pepper noise of probability P , where .0 ≤P≤ .9. Model parameter accuracy did not change for P < .7, corresponding to Dice coefficients greater than .7. The inverse problem estimates bone adaptation parameters from multiple CT images of changing bone microarchitecture. In the future, this technique could be used to determine participant-specific bone adaptation parameters in vivo, validate bone adaptation models, and predict bone health.


Asunto(s)
Huesos , Tomografía Computarizada por Rayos X , Algoritmos , Huesos/diagnóstico por imagen , Hueso Esponjoso , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA