Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 244: 114161, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39191113

RESUMEN

Cardiovascular diseases pose a significant global health challenge, contributing to high mortality rates and impacting overall well-being and quality of life. Nitric oxide (NO) plays a pivotal role as a vasodilator, regulating blood pressure and enhancing blood flow-crucial elements in preventing cardiovascular diseases, making it a prime therapeutic target. Herein, metal-based nanozymes (NZs) designed to induce NO release from both endogenous and exogenous NO-donors are investigated. Successful synthesis of gold, platinum (Pt) and cerium oxide NZs is achieved, with all three NZs demonstrating the ability to catalyze the NO release from various NO sources, namely S-nitrosothiols and diazeniumdiolates. Pt-NZs exhibit the strongest performance among the three NZ types. Further exploration involved investigating encapsulation and coating techniques using poly(lactic-co-glycolic acid) nanoparticles as experimental carriers for Pt-NZs. Both strategies showed efficiency in serving as platforms for Pt-NZs, successfully showing the ability to trigger NO release.

2.
mSystems ; 9(8): e0058324, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082797

RESUMEN

Microalgal microbiomes play vital roles in the growth and health of their host, however, their composition and functions remain only partially characterized, especially across microalgal phyla. In this study, a natural seawater microbiome was introduced to three distinct, axenic species of microalgae, the haptophyte Isochrysis galbana, the chlorophyte Tetraselmis suecica, and the diatom Conticribra weissflogii (previously Thalassiosira), and its divergence and assembly under constant illumination was monitored over 49 days using 16S rRNA amplicon and metagenomic analyses. The microbiomes had a high degree of host specificity in terms of taxonomic composition and potential functions, including CAZymes profiles. Rhodobacteraceae and Flavobacteriaceae families were abundant across all microalgal hosts, but I. galbana microbiomes diverged further from T. suecica and C. weissflogii microbiomes. I. galbana microbiomes had a much higher relative abundance of Flavobacteriaceae, whereas the two other algal microbiomes had higher relative abundances of Rhodobacteraceae. This could be due to the bacterivorous mixotrophic nature of I. galbana affecting the carbohydrate composition available to the microbiomes, which was supported by the CAZymes profile of I. galbana microbiomes diverging further from those of T. suecica and C. weissflogii microbiomes. Finally, the presence of denitrification and other anaerobic pathways was found exclusively in the microbiomes of C. weissflogii, which we speculate could be a result of anoxic microenvironments forming in aggregates formed by this diatom during the experiment. These results underline the significant role of the microalgal host species on microbiome composition and functional profiles along with other factors, such as the trophic mode of the microalgal host. IMPORTANCE: As the main primary producers of the oceans, microalgae serve as cornerstones of the ecosystems they are part of. Additionally, they are increasingly used for biotechnological purposes such as the production of nutraceuticals, pigments, and antioxidants. Since the bacterial microbiomes of microalgae can affect their hosts in beneficial and detrimental ways, understanding these microbiomes is crucial to both the ecological and applied roles of microalgae. The present study advances the understanding of microalgal microbiome assembly, composition, and functionality across microalgal phyla, which may inform the modeling and engineering of microalgal microbiomes for biotechnological purposes.


Asunto(s)
Diatomeas , Haptophyta , Microalgas , Microbiota , ARN Ribosómico 16S , Microbiota/fisiología , ARN Ribosómico 16S/genética , Chlorophyta/microbiología , Agua de Mar/microbiología
3.
Am J Case Rep ; 25: e943411, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648203

RESUMEN

BACKGROUND Over the past 30 years, painful reactions during magnetic resonance imaging (MRI) in tattooed individuals have been sporadically reported. These complications manifest as burning pain in tattooed skin areas, occasionally with swelling and redness, often leading to termination of the scanning. The exact cause is unclear, but iron oxide pigments in permanent make-up or elements in carbon black tattoos may play a role. Additionally, factors like tattoo age, design, and color may influence reactions. The existing literature lacks comprehensive evidence, leaving many questions unanswered. CASE REPORT We present the unique case of a young man who experienced recurring painful reactions in a recently applied black tattoo during multiple MRI scans. Despite the absence of ferrimagnetic ingredients in the tattoo ink, the patient reported intense burning sensations along with transient erythema and edema. Interestingly, the severity of these reactions gradually decreased over time, suggesting a time-dependent factor contributing to the problem. This finding highlights the potential influence of pigment particle density in the skin on the severity and risk of MRI interactions. We hypothesize that the painful sensations could be triggered by excitation of dermal C-fibers by conductive elements in the tattoo ink, likely carbon particles. CONCLUSIONS Our case study highlights that MRI-induced tattoo reactions may gradually decrease over time. While MRI scans occasionally can cause transient reactions in tattoos, they do not result in permanent skin damage and remain a safe and essential diagnostic tool. Further research is needed to understand the mechanisms behind these reactions and explore preventive measures.


Asunto(s)
Imagen por Resonancia Magnética , Tatuaje , Humanos , Tatuaje/efectos adversos , Masculino , Adulto , Estudios Prospectivos , Tinta
4.
Nature ; 629(8010): 92-97, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503346

RESUMEN

Ammonia is crucial as a fertilizer and in the chemical industry and is considered to be a carbon-free fuel1. Ammonia electrosynthesis from nitrogen under ambient conditions offers an attractive alternative to the Haber-Bosch process2,3, and lithium-mediated nitrogen reduction represents a promising approach to continuous-flow ammonia electrosynthesis, coupling nitrogen reduction with hydrogen oxidation4. However, tetrahydrofuran, which is commonly used as a solvent, impedes long-term ammonia production owing to polymerization and volatility problems. Here we show that a chain-ether-based electrolyte enables long-term continuous ammonia synthesis. We find that a chain-ether-based solvent exhibits non-polymerization properties and a high boiling point (162 °C) and forms a compact solid-electrolyte interphase layer on the gas diffusion electrode, facilitating ammonia release in the gas phase and ensuring electrolyte stability. We demonstrate 300 h of continuous operation in a flow electrolyser with a 25 cm2 electrode at 1 bar pressure and room temperature, and achieve a current-to-ammonia efficiency of 64 ± 1% with a gas-phase ammonia content of approximately 98%. Our results highlight the crucial role of the solvent in long-term continuous ammonia synthesis.

5.
Int Immunopharmacol ; 129: 111643, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340420

RESUMEN

Particle-based systems have become a state-of-the-art method for in vitro expanding cytotoxic T cells by tailoring their surface with activating molecules. However, commonly used methods utilize facile carbodiimide chemistry leading to uncontrolled orientation of the immobilized antibodies on the particle surface that can lead to poor binding to target cells. To address this, selective coupling strategies utilizing regioselective chemical groups such as disulfide bridges offer a simple approach. In this work we present a set of methods to investigate the effect of polymeric nanoparticles, conjugated with either regioselective- or randomly-immobilized antiCD3 and antiCD28 antibodies, on the activation potential, expansion and expression of activation markers in T cells. We show that nanoparticles with well-oriented monovalent antibodies conjugated via maleimide require fewer ligands on the surface to efficiently expand T cells compared to bivalent antibodies randomly-immobilized via carbodiimide conjugation. Analysis of the T cell expression markers reveal that the T cell phenotype can be fine-tuned by adjusting the surface density of well-oriented antibodies, while randomly immobilized antibodies showed no differences despite their ligand density. Both conjugation techniques induced cytotoxic T cells, evidenced by analyzing their Granzyme B secretion. Furthermore, antibody orientation affects the immunological synapse and T cell activation by changing the calcium influx profile upon activation. Nanoparticles with well-oriented antibodies showed lower calcium influx compared to their bivalent randomly-immobilized counterparts. These results highlight the importance of controlling the antibody density and orientation on the nanoparticle surface via controlled coupling chemistries, helping to develop improved particle-based expansion protocols to enhance T cell therapies.


Asunto(s)
Anticuerpos Inmovilizados , Nanopartículas , Humanos , Calcio , Anticuerpos , Linfocitos T CD8-positivos , Complejo CD3 , Nanopartículas/química , Carbodiimidas
6.
Biomater Adv ; 156: 213698, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006785

RESUMEN

The transfusion of donor red blood cells (RBCs) is seriously hampered by important drawbacks that include limited availability and portability, the requirement of being stored in refrigerated conditions, a short shelf life or the need for RBC group typing and crossmatching. Thus, hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) which make use of the main component of RBCs and the responsible protein for O2 transport, hold a lot of promise in modern transfusion and emergency medicine. Despite the great progress achieved, it is still difficult to create HBOCs with a high Hb content to attain the high O2 demands of our body. Herein a metal-phenolic self-assembly approach that can be conducted in water and in one step to prepare nanoparticles (NPs) fully made of Hb (Hb-NPs) is presented. In particular, by combining Hb with polyethylene glycol, tannic acid (TA) and manganese ions, spherical Hb-NPs with a uniform size around 350-525 nm are obtained. The functionality of the Hb-NPs is preserved as shown by their ability to bind and release O2 over multiple rounds. The binding mechanism of TA and Hb is thoroughly investigated by UV-vis absorption and fluorescence spectroscopy. The binding site number, apparent binding constant at two different temperatures and the corresponding thermodynamic parameters are identified. The results demonstrate that the TA-Hb interaction takes place through a static mechanism in a spontaneous process as shown by the decrease in Gibbs free energy. The associated increase in entropy suggests that the TA-Hb binding is dominated by hydrophobic interactions.


Asunto(s)
Sustitutos Sanguíneos , Nanopartículas , Oxígeno/química , Oxígeno/metabolismo , Sustitutos Sanguíneos/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Nanopartículas/química , Metales
7.
RSC Adv ; 13(47): 33159-33166, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37964901

RESUMEN

Although aquaculture is a major player in current and future food production, the routine use of antibiotics provides ample ground for development of antibiotic resistance. An alternative route to disease control is the use of probiotic bacteria such as the marine bacteria Phaeobacter inhibens which produces tropodithietic acid (TDA) that inhibit pathogens without affecting the fish. Improving conditions for the formation of biofilm and TDA-synthesis is a promising avenue for biocontrol in aquaculture. In this study, the biosynthesis of TDA by Phaeobacter inhibens grown on micro-structured polymeric surfaces in micro-fluidic flow-cells is investigated. The formation of biofilms on three surface topographies; hexagonal micro-pit-arrays, hexagonal micro-pillar-arrays, and planar references is investigated. The biomass on these surfaces is measured by a non-invasive confocal microscopy 3D imaging technique, and the corresponding TDA production is monitored by liquid chromatography mass spectrometry (LC-MS) in samples collected from the outlets of the microfluidic channels. Although all surfaces support growth of P. inhibens, biomass appears to be decoupled from total TDA biosynthesis as the micro-pit-arrays generate the largest biomass while the micro-pillar-arrays produce significantly higher amounts of TDA. The findings highlight the potential for optimized micro-structured surfaces to maintain biofilms of probiotic bacteria for sustainable aquacultures.

8.
Transl Vis Sci Technol ; 12(8): 20, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37615641

RESUMEN

Purpose: Drug delivery to the retina remains a challenge due to ocular barriers and fast clearing mechanisms. Nanocarrier drug delivery systems (NDDSs) hold the promise of prolonging intraocular retention times and increasing drug concentrations in the retina. Methods: Anionic and cationic PEGylated liposomes, loaded with oxaliplatin (OxPt) to be used as trace element, were prepared from dry lipid powders. The differently charged liposomes were intravitreally injected in C57BL/6JrJ mice; eyes were harvested 2 hours and 24 hours post-injection. To investigate active transport mechanisms in the eye, a subset of mice were pre-injected with chloroquine before injection with cationic liposomes. Eyes were dissected and the distribution of OxPt in different tissues were quantified by inductively coupled plasma mass spectrometry (ICP-MS). Results: Both liposome formulations enhanced the retention time of OxPt in the vitreous over free OxPt. Surprisingly, when formulated in cationic liposomes, OxPt translocated through the retina and accumulated in the RPE-sclera. Pre-injection with chloroquine inhibited the transport of liposomal OxPt from the vitreous to the RPE-sclera. Conclusions: We show that liposomes can enhance the retention time of small molecular drugs in the vitreous and that active transport mechanisms are involved in the trans retinal transport of NDDS after intravitreal injections. Translational Relevance: These results highlight the need for understanding the dynamics of ocular transport mechanisms in living eyes when designing NDDS with the back of the eye as the target. Active transport of nanocarriers through the retina will limit the drug concentration in the neuronal retina but might be exploited for targeting the RPE.


Asunto(s)
Liposomas , Retina , Animales , Ratones , Ratones Endogámicos C57BL , Esclerótica , Cloroquina , Oxaliplatino
9.
Microb Biotechnol ; 16(6): 1277-1292, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36860178

RESUMEN

Lactococcus lactis, a lactic acid bacterium with a typical fermentative metabolism, can also use oxygen as an extracellular electron acceptor. Here we demonstrate, for the first time, that L. lactis blocked in NAD+ regeneration can use the alternative electron acceptor ferricyanide to support growth. By electrochemical analysis and characterization of strains carrying mutations in the respiratory chain, we pinpoint the essential role of the NADH dehydrogenase and 2-amino-3-carboxy-1,4-naphtoquinone in extracellular electron transfer (EET) and uncover the underlying pathway systematically. Ferricyanide respiration has unexpected effects on L. lactis, e.g., we find that morphology is altered from the normal coccoid to a more rod shaped appearance, and that acid resistance is increased. Using adaptive laboratory evolution (ALE), we successfully enhance the capacity for EET. Whole-genome sequencing reveals the underlying reason for the observed enhanced EET capacity to be a late-stage blocking of menaquinone biosynthesis. The perspectives of the study are numerous, especially within food fermentation and microbiome engineering, where EET can help relieve oxidative stress, promote growth of oxygen sensitive microorganisms and play critical roles in shaping microbial communities.


Asunto(s)
Lactococcus lactis , Transporte de Electrón , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Electrones , Fermentación , Ferricianuros/metabolismo , Oxígeno/metabolismo
10.
Int J Biol Macromol ; 235: 123658, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36822285

RESUMEN

The growing interest in biopharmaceuticals combined with the challenges regarding formulation and delivery continues to encourage the development of new and improved formulations of this class of therapeutics. Nanoclusters (NCs) represent a type of formulation strategy where the biopharmaceutical is clustered in a reversible manner to function as both the therapeutic and the vehicle. In this study, insulin NCs (INCs) were formulated by a new methodology of first crosslinking proteins followed by desolvation. Crosslinking of the protein with the reducible DTSSP crosslinker improved control of the INC synthesis process to give INCs with a mean size of 198 ± 7 nm and a mean zeta potential of -39 ± 1 mV. Crosslinking and clustering of insulin did not induce cytotoxicity or major differences in the biological activity compared to the free unmodified protein. The potency of the crosslinked insulin and the INCs appeared slightly lower than that of the unmodified protein, and significantly higher doses of the INCs compared to the free protein were applied to achieve similar blood sugar lowering effects in vivo. Interestingly, the INCs allowed for high doses to be subcutaneously delivered with prolonged efficacy without being lethal in rats.


Asunto(s)
Insulina , Proteínas , Ratas , Animales , Preparaciones de Acción Retardada/farmacología , Excipientes
11.
ACS Appl Mater Interfaces ; 15(2): 2564-2577, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598781

RESUMEN

For three-dimensional (3D) bioprinting to fulfill its promise and enable the automated fabrication of complex tissue-mimicking constructs, there is a need for developing bioinks that are not only printable and biocompatible but also have integrated cell-instructive properties. Toward this goal, we here present a scalable technique for generating nanofiber 3D printing inks with unique tissue-guiding capabilities. Our core methodology relies on tailoring the size and dispersibility of cellulose fibrils through a solvent-controlled partial carboxymethylation. This way, we generate partially negatively charged cellulose nanofibers with diameters of ∼250 nm and lengths spanning tens to hundreds of microns. In this range, the fibers structurally match the size and dimensions of natural collagen fibers making them sufficiently large to orient cells. Yet, they are simultaneously sufficiently thin to be optically transparent. By adjusting fiber concentration, 3D printing inks with excellent shear-thinning properties can be established. In addition, as the fibers are readily dispersible, composite inks with both carbohydrates and extracellular matrix (ECM)-derived proteins can easily be generated. We apply such composite inks for 3D printing cell-laden and cross-linkable structures, as well as tissue-guiding gel substrates. Interestingly, we find that the spatial organization of engineered tissues can be defined by the shear-induced alignment of fibers during the printing procedure. Specifically, we show how myotubes derived from human and murine skeletal myoblasts can be programmed into linear and complex nonlinear architectures on soft printed substrates with intermediate fiber contents. Our nanofibrillated cellulose inks can thus serve as a simple and scalable tool for engineering anisotropic human muscle tissues that mimic native structure and function.


Asunto(s)
Bioimpresión , Nanofibras , Animales , Humanos , Ratones , Nanofibras/química , Celulosa/química , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Bioimpresión/métodos , Andamios del Tejido/química , Hidrogeles/química , Tinta
12.
mSphere ; 8(1): e0051722, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36622251

RESUMEN

In the marine environment, surface-associated bacteria often produce an array of antimicrobial secondary metabolites, which have predominantly been perceived as competition molecules. However, they may also affect other hallmarks of surface-associated living, such as motility and biofilm formation. Here, we investigate the ecological significance of an antibiotic secondary metabolite, tropodithietic acid (TDA), in the producing bacterium, Phaeobacter piscinae S26. We constructed a markerless in-frame deletion mutant deficient in TDA biosynthesis, S26ΔtdaB. Molecular networking demonstrated that other chemical sulfur-containing features, likely related to TDA, were also altered in the secondary metabolome. We found several changes in the physiology of the TDA-deficient mutant, ΔtdaB, compared to the wild type. Growth of the two strains was similar; however, ΔtdaB cells were shorter and more motile. Transcriptome and proteome profiling revealed an increase in gene expression and protein abundance related to a type IV secretion system, and to a prophage, and a gene transfer agent in ΔtdaB. All these systems may contribute to horizontal gene transfer (HGT), which may facilitate adaptation to novel niches. We speculate that once a TDA-producing population has been established in a new niche, the accumulation of TDA acts as a signal of successful colonization, prompting a switch to a sessile lifestyle. This would lead to a decrease in motility and the rate of HGT, while filamentous cells could form the base of a biofilm. In addition, the antibiotic properties of TDA may inhibit invading competing microorganisms. This points to a role of TDA in coordinating colonization and adaptation. IMPORTANCE Despite the broad clinical usage of microbial secondary metabolites with antibiotic activity, little is known about their role in natural microbiomes. Here, we studied the effect of production of the antibiotic tropodithietic acid (TDA) on the producing strain, Phaeobacter piscinae S26, a member of the Roseobacter group. We show that TDA affects several phenotypes of the producing strain, including motility, cell morphology, metal metabolism, and three horizontal gene transfer systems: a prophage, a type IV secretion system, and a gene transfer agent. Together, this indicates that TDA participates in coordinating the colonization process of the producer. TDA is thus an example of a multifunctional secondary metabolite that can mediate complex interactions in microbial communities. This work broadens our understanding of the ecological role that secondary metabolites have in microbial community dynamics.


Asunto(s)
Rhodobacteraceae , Sistemas de Secreción Tipo IV , Sistemas de Secreción Tipo IV/metabolismo , Rhodobacteraceae/genética , Antibacterianos/metabolismo
13.
Front Bioeng Biotechnol ; 10: 965200, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159696

RESUMEN

Unsuccessful clinical translation of orally delivered biological drugs remains a challenge in pharmaceutical development and has been linked to insufficient mechanistic understanding of intestinal drug transport. Live cell imaging could provide such mechanistic insights by directly tracking drug transport across intestinal barriers at subcellular resolution, however traditional intestinal in vitro models are not compatible with the necessary live cell imaging modalities. Here, we employed a novel microfluidic platform to develop an in vitro intestinal epithelial barrier compatible with advanced widefield- and confocal microscopy. We established a quantitative, multiplexed and high-temporal resolution imaging assay for investigating the cellular uptake and cross-barrier transport of biologics while simultaneously monitoring barrier integrity. As a proof-of-principle, we use the generic model to monitor the transport of co-administrated cell penetrating peptide (TAT) and insulin. We show that while TAT displayed a concentration dependent difference in its transport mechanism and efficiency, insulin displayed cellular internalization, but was restricted from transport across the barrier. This illustrates how such a sophisticated imaging based barrier model can facilitate mechanistic studies of drug transport across intestinal barriers and aid in vivo and clinical translation in drug development.

14.
Nanoscale Adv ; 4(3): 742-753, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36131819

RESUMEN

Atherosclerosis is a leading cause of death worldwide. Antioxidant therapy has been considered a promising treatment modality for atherosclerosis, since reactive oxygen species (ROS) play a major role in the pathogenesis of atherosclerosis. We developed ROS-scavenging antioxidant nanoparticles (NPs) that can serve as an effective therapy for atherosclerosis. The newly developed novel antioxidant ROS-eliminating NPs were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and act as a superoxide dismutase (SOD) mimetic agent. SOD is an anti-ROS enzyme which is difficult to use for passive delivery due to its low half-life and stability. Copolymers were synthesized using different feed ratios of 2,2,6,6-tetramethyl-4-piperidyl methacrylate (PMA) and glycidyl methacrylate (GMA) monomers and an anti-ROS nitroxyl radical polymer was prepared via oxidation. The copolymer was further conjugated with a 6-aminofluorescein via a oxirane ring opening reaction for intracellular delivery in RAW 264.7 cells. The synthesized copolymers were blended to create NPs (∼150 nm size) in aqueous medium and highly stable up to three weeks. The NPs were shown to be taken up by macrophages and to be cytocompatible even at high dose levels (500 µg mL-1). Finally, the nitroxide NPs has been shown to inhibit foam cell formation in macrophages by decreasing internalization of oxidized low-density lipoproteins.

15.
J Agric Food Chem ; 70(37): 11623-11630, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36057098

RESUMEN

Streptococcus thermophilus is a fast-growing lactic acid bacterium (LAB) used in yoghurt and cheese manufacturing. Recently, we reported how this bacterium could serve as a cell catalyst for hydrolyzing lactose when permeabilized by nisin A. To enhance the lactose hydrolyzing activity of S. thermophilus, we mutated a dairy strain and screened for variants with elevated ß-galactosidase activity. Two isolates, ST30-8 and ST95, had 2.4-fold higher activity. Surprisingly, both strains were able to hydrolyze lactose when used as whole-cell lactase catalysts without permeabilization, and ST30-8 hydrolyzed 30 g/L lactose in 6 h at 50 °C using 0.18 g/L cells. Moreover, both strains hydrolyzed lactose while growing in milk. Genome sequencing revealed a mutation in l-lactate dehydrogenase, which we believe hampers growth and increases the capacity of S. thermophilus to hydrolyze lactose. Our findings will allow production of sweet lactose-reduced yoghurt without the use of costly purified lactase enzymes.


Asunto(s)
Lactasa , Yogur , Animales , Fermentación , Hidrólisis , L-Lactato Deshidrogenasa , Lactasa/genética , Ácido Láctico , Lactosa , Leche/metabolismo , beta-Galactosidasa/metabolismo
16.
Nanotheranostics ; 6(4): 388-399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912139

RESUMEN

Astatine-211 (211At) is one of the most promising α-emitters for targeted alpha therapy, especially of cancer metastases. However, the lack of a stable isotope, frequent in vivo deastatination, and limited radiochemical knowledge makes it challenging to apply. Here, we report a new strategy for radiolabeling the lipophilic core of polymeric micelles (PMs) with covalently bound 211At. The PMs were radiolabeled via either an indirect synthon-based method or directly on the amphipathic block copolymer. The radiochemistry was optimized with iodine-125 (125I) and then adapted for 211At, enabling the use of both elements as a potential theranostic pair. PMs that were core-radiolabeled with both 125I or 211At were prepared and characterized, based on a PEG(5k)-PLGA(10k) co-polymer. The stability of the radiolabeled PMs was evaluated in mouse serum for 21 h, showing radiochemical stability above 85%. After in vivo evaluation of the 211At- labeled PMs, 4-5 % ID/g of the 211At could still be detected in the blood, showing a promising in vivo stability of the PMs. Further, 211At-labeled PMs accumulated in the spleen (20-30 %ID/g) and the liver (2.5- 5.5 %ID/g), along with some detection of 211At in the thyroid (3.5-9 %ID/g). This led to the hypothesis that deastatination takes place in the liver, whereas good stability of the 211At core-radiolabel was observed in the blood.


Asunto(s)
Micelas , Medicina de Precisión , Animales , Radioisótopos de Yodo/uso terapéutico , Ratones , Polímeros/química , Radiofármacos
17.
FEMS Yeast Res ; 22(1)2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922083

RESUMEN

The cell wall is a dynamic organelle that determines the shape and provides the cell with mechanical strength. This study investigated whether modulation of cell wall composition can influence the production or secretion of small metabolites by yeast cell factories. We deleted and upregulated several cell wall-related genes KRE2, CWP1, CWP2, ECM33, PUN1, and LAS21 in yeast Saccharomyces cerevisiae engineered for p-coumaric acid or ß-carotene production. Deletions of las21∆ and ecm33∆ impaired the yeast growth on medium with cell wall stressors, calcofluor white, and caffeine. Both overexpression and deletion of ECM33 significantly improved the specific yield of p-coumaric acid and ß-carotene. We observed no change in secretion in any cell wall-altered mutants, suggesting the cell wall is not a limiting factor for small molecule secretion at the current production levels. We evaluated the cell wall morphology of the ECM33 mutant strains using transmission electron microscopy. The ecm33∆ mutants had an increased chitin deposition and a less structured cell wall, while the opposite was observed in ECM33-overexpressing strains. Our results point at the cell wall-related gene ECM33 as a potential target for improving production in engineered yeast cell factories.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Pared Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Caroteno/metabolismo
18.
Chemistry ; 28(61): e202201847, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35851967

RESUMEN

Combining nanotechnology and bioorthogonal chemistry for theranostic strategies offers the possibility to develop next generation nanomedicines. These materials are thought to increase therapeutic outcome and improve current cancer management. Due to their size, nanomedicines target tumors passively. Thus, they can be used for drug delivery purposes. Bioorthogonal chemistry allows for a pretargeting approach. Higher target-to-background drug accumulation ratios can be achieved. Pretargeting can also be used to induce internalization processes or trigger controlled drug release. Colloidal gold nanoparticles (AuNPs) have attracted widespread interest as drug delivery vectors within the last decades. Here, we demonstrate for the first time the possibility to successfully ligate AuNPs in vivo to pretargeted monoclonal antibodies. We believe that this possibility will facilitate the development of AuNPs for clinical use and ultimately, improve state-of-the-art patient care.


Asunto(s)
Oro , Nanopartículas del Metal , Humanos , Oro Coloide , Química Clic , Línea Celular Tumoral , Anticuerpos Monoclonales
19.
ACS Nano ; 16(7): 10918-10930, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35838499

RESUMEN

Whereas adoptive T cell therapy has been extensively studied for cancer treatment, the response is still limited primarily due to immune dysfunction related to poor cell engraftment, tumor infiltration and engagement, and lack of a target. In addition, the modification of therapeutic T cells often suffers from being complex and expensive. Here, we present a strategy to load T cells with SHP099, an allosteric SHP2 inhibitor, to enhance the therapeutic efficacy of the T cells. Remote-loading of SHP099 into lipid nanoparticles decorated with triarginine motifs resulted in nanocrystal formation of SHP099 inside the lipid vesicles and allowed high loading efficiency and prolonged retention of SHP099 nanocrystals within T cells. Cell-loaded SHP099 enabled sustained inhibition of the PD-1/PD-L1 signaling and increased cytolytic activity of the T cells. We show in a mouse model that tumor-homing T cells can circulate with the cargos, improving their tumor accumulation compared to systemically administered lipid nanoparticles. On an established solid tumor model, adoptively transferred SHP099 loaded T cells induced complete tumor eradication and durable immune memory against tumor rechallenging on all treated mice by effectively inhibiting the PD-1/PD-L1 checkpoint signal. We demonstrate that the combination of T cell therapy with SHP2 inhibition is a promising therapeutic strategy, and the lipid nanocrystal platform could be generalized as a promising approach for T cell loading of immunomodulatory drugs.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Antígeno B7-H1 , Linfocitos T/patología , Receptor de Muerte Celular Programada 1/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Tratamiento Basado en Trasplante de Células y Tejidos , Lípidos , Línea Celular Tumoral
20.
Biomater Adv ; 134: 112691, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35581082

RESUMEN

Despite being an indispensable clinical procedure, the transfusion of donor blood has important limitations including a short shelf-life, limited availability and specific storage requirements. Therefore, a lot of effort has been devoted to developing hemoglobin (Hb)-based oxygen carriers (HBOCs) that are able to replace or complement standard blood transfusions, especially in extreme life-threatening situations. Herein, we employed a Hb-loaded poly(lactide-co-glycolide) core which was subsequently coated with nanozymes to protect the encapsulated Hb from oxidation by reactive oxygen species. To render HBOCs with long circulation in the vasculature, which is a crucial requirement to achieve the high oxygen demands of our organism, the carrier was coated with a red blood cell-derived membrane. Three coating methods were explored and evaluated by their ability to repel the deposition of proteins and minimize their uptake by an endothelial cell line. Preservation of the oxygen carrying capacity of the membrane-coated carrier was demonstrated by an oxygen-binding and releasing assay and, the functionality resulting from the entrapped nanozymes, was shown by means of superoxide radical anion and hydrogen peroxide depletion assays. All in all, we have demonstrated the potential of the membrane-coated nanocarriers as novel oxygen carrying systems with both antioxidant and stealth properties.


Asunto(s)
Sustitutos Sanguíneos , Sustitutos Sanguíneos/química , Recuento de Eritrocitos , Eritrocitos/metabolismo , Hemoglobinas/química , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA