Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(16): 15379-15387, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37540827

RESUMEN

Repulsive and long-range exciton-exciton interactions are crucial for the exploration of one-dimensional (1D) correlated quantum phases in the solid state. However, the experimental realization of nanoscale confinement of a 1D dipolar exciton has thus far been limited. Here, we demonstrate atomically precise lateral heterojunctions based at transitional-metal dichalcogenides (TMDCs) as a platform for 1D dipolar excitons. The dynamics and transport of the interfacial charge transfer excitons in a type II WSe2-WS1.16Se0.84 lateral heterostructure were spatially and temporally imaged using ultrafast transient reflection microscopy. The expansion of the exciton cloud driven by dipolar repulsion was found to be strongly density dependent and highly anisotropic. The interaction strength between the 1D excitons was determined to be ∼3.9 × 10-14 eV cm-2, corresponding to a dipolar length of 310 nm, which is a factor of 2-3 larger than the interlayer excitons at two-dimensional van der Waals vertical interfaces. These results suggest 1D dipolar excitons with large static in-plane dipole moments in lateral TMDC heterojunctions as an exciting system for investigating quantum many-body physics.

2.
Adv Sci (Weinh) ; 9(22): e2201272, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35652199

RESUMEN

PtSe2 is one of the most promising materials for the next generation of piezoresistive sensors. However, the large-scale synthesis of homogeneous thin films with reproducible electromechanical properties is challenging due to polycrystallinity. It is shown that stacking phases other than the 1T phase become thermodynamically available at elevated temperatures that are common during synthesis. It is shown that these phases can make up a significant fraction in a polycrystalline thin film and discuss methods to characterize them, including their Seebeck coefficients. Lastly, their gauge factors, which vary strongly and heavily impact the performance of a nanoelectromechanical device are estimated.

3.
ACS Appl Mater Interfaces ; 13(28): 33677-33684, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34227384

RESUMEN

van der Waals heterostructures are currently the focus of intense investigation; this is essentially due to the unprecedented flexibility offered by the total relaxation of lattice matching requirements and their new and exotic properties compared to the individual layers. Here, we investigate the hybrid transition-metal dichalcogenide/2D perovskite heterostructure WS2/(PEA)2PbI4 (where PEA stands for phenylethylammonium). We present the first density functional theory (DFT) calculations of a heterostructure ensemble, which reveal a novel band alignment, where direct electron transfer is blocked by the organic spacer of the 2D perovskite. In contrast, the valence band forms a cascade from WS2 through the PEA to the PbI4 layer allowing hole transfer. These predictions are supported by optical spectroscopy studies, which provide compelling evidence for both charge transfer and nonradiative transfer of the excitation (energy transfer) between the layers. Our results show that TMD/2D perovskite (where TMD stands for transition-metal dichalcogenides) heterostructures provide a flexible and convenient way to engineer the band alignment.

4.
Phys Rev Lett ; 125(19): 196401, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33216566

RESUMEN

High-level first-principles computations predict blue phosphorene bilayer to be a two-dimensional metal. This structure has not been considered before and was identified by employing a block-diagram scheme that yields the complete set of five high-symmetry stacking configurations of buckled honeycomb layers, and allows their unambiguous classification. We show that all of these stacking configurations are stable or at least metastable both for blue phosphorene and gray arsenene bilayers. For blue phosphorene, the most stable stacking arrangement has not yet been reported, and surprisingly it is metallic, while the others are indirect band gap semiconductors. As it is impossible to interchange the stacking configurations by translations, all of them should be experimentally accessible via the transfer of monolayers. The metallic character of blue phosphorene bilayer is caused by its short interlayer distance of 3.01 Å and offers the exceptional possibility to design single elemental all-phosphorus transistors.

5.
Inorg Chem ; 59(22): 16441-16453, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33091305

RESUMEN

A promising strategy for new electrically conductive coordination polymers is the combination of d10 metal ions, which tolerate short metal···metal distances, with dithiolene linkers, known for their "non-innocent" redox behavior. This study explores the coordination chemistry of 2,3-pyrazinedithiol (H2pdt) toward Cu+ and Ag+ ions, highlighting similarities and differences. The synthetic approach, starting with the fully protonated ligand, allowed the isolation of a homoleptic bis(dithiolene) complex with formal CuI atoms, [Cu(H2pdt)2]Cl (1). This complex was further transformed to a 1D coordination polymer with short metal···metal distances, 1D[Cu(Hpdt)] (2Cu). The larger Ag+ ion directly built up a very similar coordination polymer, 1D[Ag(Hpdt)] (2Ag), without any appearance of an intermediate metal complex. The coordination polymer 1D[Cu(H2pdt)I] (4), like complex 1, bears fully protonated H2pdt ligands in their dithione form. Upon heating, both compounds underwent auto-oxidation coupled with a dehydrogenation of the ligand to form the open-shell neutral copper(II) complex [Cu(Hpdt)2] (3) and the coordination polymer 1D[Cu2I2(H2pdt)(Hpdt)] (5), respectively. For all presented compounds, crystal structures are discussed in-depth. Furthermore, properties of 1, 3, and those of the three 1D coordination polymers, 2Ag, 2Cu, and 4, were investigated by UV-vis-NIR spectroscopy, cyclic voltammetry, and variable-temperature magnetic susceptibility, and direct current (dc)-conductivity measurements. The experimental results are compared and discussed with the aid of DFT simulations.

6.
Angew Chem Int Ed Engl ; 59(24): 9242-9254, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32065703

RESUMEN

Noble-metal chalcogenides, dichalcogenides, and phosphochalcogenides are an emerging class of two-dimensional materials. Quantum confinement (number of layers) and defect engineering enables their properties to be tuned over a broad range, including metal-to-semiconductor transitions, magnetic ordering, and topological surface states. They possess various polytypes, often of similar formation energy, which can be accessed by selective synthesis approaches. They excel in mechanical, optical, and chemical sensing applications, and feature long-term air and moisture stability. In this Minireview, we summarize the recent progress in the field of noble-metal chalcogenides and phosphochalcogenides and highlight the structural complexity and its impact on applications.

7.
Small ; 14(51): e1803910, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30398000

RESUMEN

2D crystals, single sheets of layered materials, often show distinct properties desired for optoelectronic applications, such as larger and direct band gaps, valley- and spin-orbit effects. Being atomically thin, the low amount of material is a bottleneck in photophysical and photochemical applications. Here, the formation of stacks of 2D crystals intercalated with small surfactant molecules is proposed. It is shown, using first principles calculations, that the very short surfactant methyl amine electronically decouples the layers. The indirect-direct band gap transition characteristic for Group 6 transition metal dichalcogenides is demonstrated experimentally by observing the emergence of a strong photoluminescence signal for ethoxide-intercalated WSe2 and MoSe2 multilayered nanoparticles with lateral size of about 10 nm and beyond. The proposed hybrid materials offer the highest possible density of the 2D crystals with electronic properties typical of monolayers. Variation of the surfactant's chemical potential allows fine-tuning of electronic properties and potentially elimination of trap states caused by defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...