Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 15(5): 894-902, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31719255

RESUMEN

Rosmarinic acid, a common ester extracted from Rosemary, Perilla frutescens, and Salvia miltiorrhiza Bunge, has been shown to have protective effects against various diseases. This is an investigation into whether rosmarinic acid can also affect the changes of white matter fibers and cognitive deficits caused by hypoxic injury. The right common carotid artery of 3-day-old rats was ligated for 2 hours. The rats were then prewarmed in a plastic container with holes in the lid, which was placed in 37°C water bath for 30 minutes. Afterwards, the rats were exposed to an atmosphere with 8% O2 and 92% N2 for 30 minutes to establish the perinatal hypoxia/ischemia injury models. The rat models were intraperitoneally injected with rosmarinic acid 20 mg/kg for 5 consecutive days. At 22 days after birth, rosmarinic acid was found to improve motor, anxiety, learning and spatial memory impairments induced by hypoxia/ischemia injury. Furthermore, rosmarinic acid promoted the proliferation of oligodendrocyte progenitor cells in the subventricular zone. After hypoxia/ischemia injury, rosmarinic acid reversed to some extent the downregulation of myelin basic protein and the loss of myelin sheath in the corpus callosum of white matter structure. Rosmarinic acid partially slowed down the expression of oligodendrocyte marker Olig2 and myelin basic protein and the increase of oligodendrocyte apoptosis marker inhibitors of DNA binding 2. These data indicate that rosmarinic acid ameliorated the cognitive dysfunction after perinatal hypoxia/ischemia injury by improving remyelination in corpus callosum. This study was approved by the Animal Experimental Ethics Committee of Xuzhou Medical University, China (approval No. 20161636721) on September 16, 2017.

2.
Pharm Biol ; 57(1): 263-268, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31124385

RESUMEN

Context: Researchers in a variety of fields have extensively focused on histone deacetylase 6 (HDAC6) due to its aggravation of inflammatory reaction. However, relevant studies examining whether HDAC6 could exacerbate lipopolysaccharide (LPS)-induced inflammation are still lacking. Objective: We assessed the role of HDAC6 in LPS-induced brain inflammation and used the HDAC6-selective inhibitor Tubastatin A (TBSA) to investigate the potential mechanisms further. Materials and methods: Brain inflammation was induced in Kunming (KM) mice via intraperitoneal (I.P.), injection of Lipopolysaccharide (LPS) (1 mg/kg), the TBSA (0.5 mg/kg) was delivered via intraperitoneal. The phosphorylated p38 (p-p38) Mitogen-activated protein kinases (MAPK) and expression of typical inflammatory mediators, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in both the hippocampus and cortex, were examined by immunoblotting. Nissl staining was used to detect the neuronal damage in the hippocampus and the cortex. Results: About 1 mg/kg LPS via daily intraperitoneal (I.P.) injections for 12 days significantly increased p38 MAPK phosphorylation, TNF-α and IL-6 expression, and neuronal loss. However, 0.5 mg/kg TBSA (three days before LPS treatment) by I.P. injections for 15 days could reverse the above results. Conclusions: This present study provided evidence that TBSA significantly suppressed LPS-induced neuroinflammation and the expression of p-p38. Results derived from our study might help reveal the effective targeting strategies of LPS-induced brain inflammation through inhibiting HDAC6.


Asunto(s)
Encefalitis/prevención & control , Inhibidores Enzimáticos/farmacología , Histona Desacetilasa 6/antagonistas & inhibidores , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Lipopolisacáridos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Modelos Animales de Enfermedad , Encefalitis/enzimología , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA