Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 9: 1878, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619430

RESUMEN

Genomic selection (GS) is a breeding tool, which is rapidly gaining popularity for plant breeding, particularly for traits that are difficult to measure. One such trait is ascochyta blight resistance in pea (Pisum sativum L.), which is difficult to assay because it is strongly influenced by the environment and depends on the natural occurrence of multiple pathogens. Here we report a study of the efficacy of GS for predicting ascochyta blight resistance in pea, as represented by ascochyta blight disease score (ASC), and using nucleotide polymorphism data acquired through genotyping-by-sequencing. The effects on prediction accuracy of different GS models and different thresholds for missing genotypic data (which modified the number of single nucleotide polymorphisms used in the analysis) were compared using cross-validation. Additionally, the inclusion of marker × environment interactions in a genomic best linear unbiased prediction (GBLUP) model was evaluated. Finally, different ways of combining trait data from two field trials using bivariate, spatial, and single-stage analyses were compared to results obtained using a mean value. The best prediction accuracy achieved for ASC was 0.56, obtained using GBLUP analysis with a mean value for ASC and data quality threshold of 70% (i.e., missing SNP data in <30% of lines). GBLUP and Bayesian Reproducing kernel Hilbert spaces regression (RKHS) performed slightly better than the other models trialed, whereas different missing data thresholds made minimal differences to prediction accuracy. The prediction accuracies of individual, randomly selected, testing/training partitions were highly variable, highlighting the effect that the choice of training population has on prediction accuracy. The inclusion of marker × environment interactions did not increase the prediction accuracy for lines which had not been phenotyped, but did improve the results of prediction across environments. GS is potentially useful for pea breeding programs pursuing ascochyta blight resistance, both for predicting breeding values for lines that have not been phenotyped, and for providing enhanced estimated breeding values for lines for which trait data is available.

2.
Front Plant Sci ; 7: 1865, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018399

RESUMEN

Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

3.
Nat Commun ; 4: 2884, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24300952

RESUMEN

Onion (Allium cepa L.) is a biennial crop that in temperate regions is planted in the spring and, after a juvenile stage, forms a bulb in response to the lengthening photoperiod of late spring/summer. The bulb then overwinters and in the next season it flowers and sets seed. FLOWERING LOCUS T (FT) encodes a mobile signaling protein involved in regulating flowering, as well as other aspects of plant development. Here we show that in onions, different FT genes regulate flowering and bulb formation. Flowering is promoted by vernalization and correlates with the upregulation of AcFT2, whereas bulb formation is regulated by two antagonistic FT-like genes. AcFT1 promotes bulb formation, while AcFT4 prevents AcFT1 upregulation and inhibits bulbing in transgenic onions. Long-day photoperiods lead to the downregulation of AcFT4 and the upregulation of AcFT1, and this promotes bulbing. The observation that FT proteins can repress and promote different developmental transitions highlights the evolutionary versatility of FT.


Asunto(s)
Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Cebollas/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Flores/genética , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Cebollas/genética , Cebollas/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/química , Plantas/clasificación , Plantas/genética , Estaciones del Año , Alineación de Secuencia , Temperatura
4.
G3 (Bethesda) ; 2(6): 643-51, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22690373

RESUMEN

Lachrymatory factor synthase (LFS) catalyzes the formation of lachrymatory factor, one of the most distinctive traits of bulb onion (Allium cepa L.). Therefore, we used LFS as a model for a functional gene in a huge genome, and we examined the chromosomal organization of LFS in A. cepa by multiple approaches. The first-level analysis completed the chromosomal assignment of LFS gene to chromosome 5 of A. cepa via the use of a complete set of A. fistulosum-shallot (A. cepa L. Aggregatum group) monosomic addition lines. Subsequent use of an F(2) mapping population from the interspecific cross A. cepa × A. roylei confirmed the assignment of an LFS locus to this chromosome. Sequence comparison of two BAC clones bearing LFS genes, LFS amplicons from diverse germplasm, and expressed sequences from a doubled haploid line revealed variation consistent with duplicated LFS genes. Furthermore, the BAC-FISH study using the two BAC clones as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. These results suggested that LFS in A. cepa is transcribed from at least two loci and that they are localized on chromosome 5.

5.
BMC Genomics ; 13: 168, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22559261

RESUMEN

BACKGROUND: Vegetables of the genus Allium are widely consumed but remain poorly understood genetically. Genetic mapping has been conducted in intraspecific crosses of onion (Allium cepa L.), A. fistulosum and interspecific crosses between A. roylei and these two species, but it has not been possible to access genetic maps and underlying data from these studies easily. DESCRIPTION: An online comparative genomics database, AlliumMap, has been developed based on the GMOD CMap tool at http://alliumgenetics.org. It has been populated with curated data linking genetic maps with underlying markers and sequence data from multiple studies. It includes data from multiple onion mapping populations as well as the most closely related species A. roylei and A. fistulosum. Further onion EST-derived markers were evaluated in the A. cepa x A. roylei interspecific population, enabling merging of the AFLP-based maps. In addition, data concerning markers assigned in multiple studies to the Allium physical map using A. cepa-A. fistulosum alien monosomic addition lines have been compiled. The compiled data reveal extensive synteny between onion and A. fistulosum. CONCLUSIONS: The database provides the first online resource providing genetic map and marker data from multiple Allium species and populations. The additional markers placed on the interspecific Allium map confirm the value of A. roylei as a valuable bridge between the genetics of onion and A. fistulosum and as a means to conduct efficient mapping of expressed sequence markers in Allium. The data presented suggest that comparative approaches will be valuable for genetic and genomic studies of onion and A. fistulosum. This online resource will provide a valuable means to integrate genetic and sequence-based explorations of Allium genomes.


Asunto(s)
Agricultura , Allium/crecimiento & desarrollo , Allium/genética , Bases de Datos Genéticas , Genómica , Verduras/crecimiento & desarrollo , Verduras/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Cartilla de ADN/metabolismo , Sitios Genéticos/genética , Reacción en Cadena de la Polimerasa , Especificidad de la Especie
6.
Plant Cell Rep ; 29(3): 223-30, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20099065

RESUMEN

Transgenic garlic (Allium sativum) plants have been recovered directly from immature leaf material by selective culture following Agrobacterium-mediated transformation. This method involved the use of a binary vector containing the mgfp-ER reporter gene and hpt selectable marker, and followed a similar protocol developed previously for the transformation of immature onion embryos. The choice of tissue and post-transformation selection procedure resulted in a large increase in recovery of transgenic plants compared with previously confirmed allium transformation protocols. The presence of transgenes in the genome of the plants was confirmed using Southern analysis. This improvement in frequency and the use of clonal commercial "Printanor" germplasm now makes possible the integration of useful agronomic and quality traits into this crop.


Asunto(s)
Agrobacterium tumefaciens/genética , Ajo/genética , Técnicas de Transferencia de Gen , Transformación Genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Regeneración , Transgenes
7.
Theor Appl Genet ; 114(5): 815-22, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17180376

RESUMEN

Onion exhibits wide genetic and environmental variation in bioactive organosulfur compounds that impart pungency and health benefits. A PCR-based molecular marker map that included candidate genes for sulfur assimilation was used to identify genomic regions affecting pungency in the cross 'W202A' x 'Texas Grano 438'. Linkage mapping revealed that genes encoding plastidic ferredoxin-sulfite reductase (SiR) and plastidic ATP sulfurylase (ATPS) are closely linked (1-2 cM) on chromosome 3. Inbred F(3) families derived from the F(2 )population used to construct the genetic map were grown in replicated trials in two environments and bulb pungency was evaluated as pyruvic acid or lachrymatory factor. Broad-sense heritability of pungency was estimated to be 0.78-0.80. QTL analysis revealed significant associations of both pungency and bulb soluble solids content with marker intervals on chromosomes 3 and 5, which have previously been reported to condition pleiotropic effects on bulb carbohydrate composition. Highly significant associations (LOD 3.7-8.7) were observed between ATPS and SiR Loci and bulb pungency but not with bulb solids content. This association was confirmed in two larger, independently derived F(2) families from the same cross. Single-locus models suggested that the partially dominant locus associated with these candidate genes controls 30-50% of genetic variation in pungency in these pedigrees. These markers may provide a practical means to select for lower pungency without correlated selection for lowered solids.


Asunto(s)
Cebollas/genética , Cebollas/metabolismo , Azufre/metabolismo , Secuencia de Bases , Mapeo Cromosómico , Cartilla de ADN/genética , ADN de Plantas/genética , Genes de Plantas , Odorantes/análisis , Sitios de Carácter Cuantitativo , Sulfato Adenililtransferasa/genética , Sulfato Adenililtransferasa/metabolismo , Sulfito Reductasa (Ferredoxina)/genética , Sulfito Reductasa (Ferredoxina)/metabolismo
8.
Plant Cell Rep ; 24(4): 209-15, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15789208

RESUMEN

Transgenic leek (Allium porrum) and garlic (Allium sativum) plants have been recovered by the selective culturing of immature leek and garlic embryos via Agrobacterium-mediated transformation using a method similar to that described by Eady et al. (Plant Cell Rep 19:376-381, 2000) for onion transformation. This method involved the use of a binary vector containing the m-gfp-ER reporter gene and nptII selectable marker, and followed the protocol developed previously for the transformation of onions with only minor modifications pertaining to the post-transformation selection procedure which was simplified to have just a single selection regime. Transgenic cultures were selected for their ability to express the m-gfp-ER reporter gene and grown in the presence of geneticin (20 mg/l). The presence of transgenes in the genome of the plants was confirmed using TAIL-PCR and Southern analysis. This is the first report of leek and "true seed" garlic transformation. It now makes possible the integration of useful agronomic and quality traits into these crops.


Asunto(s)
Agrobacterium tumefaciens/genética , Ajo/genética , Vectores Genéticos/genética , Cebollas/genética , Plantas Modificadas Genéticamente/genética , Transformación Genética/genética , Coccidiostáticos/farmacología , Ajo/microbiología , Regulación de la Expresión Génica de las Plantas/genética , Genes Reporteros/genética , Marcadores Genéticos/genética , Genoma de Planta , Gentamicinas/farmacología , Cebollas/microbiología , Plantas Modificadas Genéticamente/microbiología , Semillas/genética , Semillas/crecimiento & desarrollo , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...