Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 21(11): 1298-1305, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36050382

RESUMEN

Understanding and mitigating filament formation, short-circuit and solid electrolyte fracture is necessary for advanced all-solid-state batteries. Here, we employ a coupled far-field high-energy diffraction microscopy and tomography approach for assessing the chemo-mechanical behaviour for dense, polycrystalline garnet (Li7La3Zr2O12) solid electrolytes with grain-level resolution. In situ monitoring of grain-level stress responses reveals that the failure mechanism is stochastic and affected by local microstructural heterogeneity. Coupling high-energy X-ray diffraction and far-field high-energy diffraction microscopy measurements reveals the presence of phase heterogeneity that can alter local chemo-mechanics within the bulk solid electrolyte. These local regions are proposed to be regions with the presence of a cubic polymorph of LLZO, potentially arising from local dopant concentration variation. The coupled tomography and FF-HEDM experiments are combined with transport and mechanics modelling to illustrate the degradation of polycrystalline garnet solid electrolytes. The results showcase the pathways for processing high-performing solid-state batteries.


Asunto(s)
Suministros de Energía Eléctrica , Electrólitos , Electrólitos/química , Difracción de Rayos X , Microscopía , Tomografía Computarizada por Rayos X
2.
IUCrJ ; 9(Pt 1): 104-113, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35059215

RESUMEN

X-ray diffraction based microscopy techniques such as high-energy diffraction microscopy (HEDM) rely on knowledge of the position of diffraction peaks with high precision. These positions are typically computed by fitting the observed intensities in detector data to a theoretical peak shape such as pseudo-Voigt. As experiments become more complex and detector technologies evolve, the computational cost of such peak-shape fitting becomes the biggest hurdle to the rapid analysis required for real-time feedback in experiments. To this end, we propose BraggNN, a deep-learning based method that can determine peak positions much more rapidly than conventional pseudo-Voigt peak fitting. When applied to a test dataset, peak center-of-mass positions obtained from BraggNN deviate less than 0.29 and 0.57 pixels for 75 and 95% of the peaks, respectively, from positions obtained using conventional pseudo-Voigt fitting (Euclidean distance). When applied to a real experimental dataset and using grain positions from near-field HEDM reconstruction as ground-truth, grain positions using BraggNN result in 15% smaller errors compared with those calculated using pseudo-Voigt. Recent advances in deep-learning method implementations and special-purpose model inference accelerators allow BraggNN to deliver enormous performance improvements relative to the conventional method, running, for example, more than 200 times faster on a consumer-class GPU card with out-of-the-box software.

3.
J Synchrotron Radiat ; 28(Pt 6): 1786-1800, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738932

RESUMEN

In the last two decades, far-field high-energy diffraction microscopy (FF-HEDM) and similar non-destructive techniques have been actively developed at synchrotron light sources around the world. As these techniques (and associated analysis tools) are becoming more available for the general users of these light sources, it is important and timely to characterize their performance and capabilities. In this work, the FF-HEDM instrument implemented at the 1-ID-E endstation of the Advanced Photon Source (APS) is summarized. The set of measurements conducted to characterize the instrument's repeatability and sensitivity to changes in grain orientation and position are also described. When an appropriate grain matching method is used, the FF-HEDM instrument's repeatability is approximately 5 µm in translation, 0.02° in rotation, and 2 × 10-4 in strain; the instrument sensitivity is approximately 5 µm in translation and 0.05° in rotation.

4.
J Synchrotron Radiat ; 28(Pt 4): 1081-1089, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34212871

RESUMEN

The objective of this work was to fabricate and characterize a new X-ray imaging detector with micrometre-scale pixel dimensions (7.8 µm) and high detection efficiency for hard X-ray energies above 20 keV. A key technology component consists of a monolithic hybrid detector built by direct deposition of an amorphous selenium film on a custom designed CMOS readout integrated circuit. Characterization was carried out at the synchrotron beamline 1-BM-B at the Advanced Photon Source of Argonne National Laboratory. The direct conversion detector demonstrated micrometre-scale spatial resolution with a 63 keV modulation transfer function of 10% at Nyquist frequency. In addition, spatial resolving power down to 8 µm was determined by imaging a transmission bar target at 21 keV. X-ray signal linearity, responsivity and lag were also characterized in the same energy range. Finally, phase contrast edge enhancement was observed in a phase object placed in the beam path. This amorphous selenium/CMOS detector technology can address gaps in commercially available X-ray detectors which limit their usefulness for existing synchrotron applications at energies greater than 50 keV; for example, phase contrast tomography and high-resolution imaging of nanoscale lattice distortions in bulk crystalline materials using Bragg coherent diffraction imaging. The technology will also facilitate the creation of novel synchrotron imaging applications for X-ray energies at or above 20 keV.

5.
Sci Rep ; 11(1): 5921, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723380

RESUMEN

The solidification mechanism and segregation behavior of laser-melted Mn35Fe5Co20Ni20Cu20 was firstly investigated via in situ synchrotron x-ray diffraction at millisecond temporal resolution. The transient composition evolution of the random solid solution during sequential solidification of dendritic and interdendritic regions complicates the analysis of synchrotron diffraction data via any single conventional tool, such as Rietveld refinement. Therefore, a novel approach combining a hard-sphere approximation model, thermodynamic simulation, thermal expansion measurement and microstructural characterization was developed to assist in a fundamental understanding of the evolution of local composition, lattice parameter, and dendrite volume fraction corresponding to the diffraction data. This methodology yields self-consistent results across different methods. Via this approach, four distinct stages were identified, including: (I) FCC dendrite solidification, (II) solidification of FCC interdendritic region, (III) solid-state interdiffusion and (IV) final cooling with marginal diffusion. It was found out that in Stage I, Cu and Mn were rejected into liquid as Mn35Fe5Co20Ni20Cu20 solidified dendritically. During Stage II, the lattice parameter disparity between dendrite and interdendritic region escalated as Cu and Mn continued segregating into the interdendritic region. After complete solidification, during Stage III, the lattice parameter disparity gradually decreases, demonstrating a degree of composition homogenization. The volume fraction of dendrites slightly grew from 58.3 to 65.5%, based on the evolving composition profile across a dendrite/interdendritic interface in diffusion calculations. Postmortem metallography further confirmed that dendrites have a volume fraction of 64.7% ± 5.3% in the final microstructure.

6.
Rev Sci Instrum ; 91(11): 113703, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261446

RESUMEN

We present an effective approach using a matched pair of polymer-based condenser-objective lenses to build a compact full-field x-ray microscope with a high spatial resolution. A unique condenser comprising arrays of high-aspect-ratio prisms with equilateral cross section is used for uniformly illuminating samples over a large field of view (FOV) from all angles, which match the acceptance of an objective made of interdigitated orthogonal rows of one-dimensional lenses. State-of-the-art Talbot grating interferometry used to characterize these lenses for the first time revealed excellent focusing properties and minimal wavefront distortions. Using a specific lens pair designed for 20 keV x rays, short-exposure times, and image registration with a cross-correlation technique, we circumvent vibrational instabilities to obtain distortion-free images with a uniform resolution of 240 nm (smallest resolvable line pair) over a large FOV, 80 × 80 µm2 in extent. The results were contrasted with those collected using commercial two-dimensional parabolic lenses with a smaller FOV. This approach implemented on a diffractometer would enable diffraction-contrast or dark-field microscopy for fast observations of "mesoscopic" phenomena in real space complementing reciprocal-space studies using diffraction on the same instrument.

7.
Rev Sci Instrum ; 91(3): 033705, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32259931

RESUMEN

This work presents a novel method of obtaining in situ strain measurements at high temperature by simultaneous digital image correlation (DIC), which provides the total strain on the specimen surface, and synchrotron x-ray diffraction (XRD), which provides lattice strains of crystalline materials. DIC at high temperature requires specialized techniques to overcome the effects of increased blackbody radiation that would otherwise overexpose the images. The technique presented herein is unique in that it can be used with a sample enclosed in an infrared heater, remotely and simultaneously with synchrotron XRD measurements. The heater included a window for camera access, and the light of the heater lamps is used as illumination. High-temperature paint is used to apply a random speckle pattern to the sample to allow the tracking of displacements and the calculation of the DIC strains. An inexpensive blue theatrical gel filter is used to block interfering visible and infrared light at high temperatures. This technique successfully produces properly exposed images at 870 °C and is expected to perform similarly at higher temperatures. The average strains measured by DIC were validated by an analytical calculation of the theoretical strain. Simultaneous DIC and XRD strain measurements of Inconel 718 (IN718) tensile test specimens were performed under thermal and mechanical loads and evaluated. This approach uses the fact that with DIC, the total strain is measured, including plastic strain, while with XRD, only elastic strain is captured. The observed differences were discussed with respect to the effective deformation mechanisms.

8.
Nanoscale ; 11(12): 5512-5525, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30860531

RESUMEN

Catalysts for energy related applications, in particular metallic nanoalloys, readily undergo atomic-level changes during electrochemical reactions. The origin, dynamics and implications of the changes for the catalysts' activity inside fuel cells though are not well understood. This is largely because they are studied on model nanoalloy structures under controlled laboratory conditions. Here we use combined synchrotron X-ray spectroscopy and total scattering to study the dynamic behaviour of nanoalloys of Pt with 3d-transition metals as they function at the cathode of an operating proton exchange membrane fuel cell. Results show that the composition and atomic structure of the nanoalloys change profoundly, from the initial state to the active form and further along the cell operation. The electrocatalytic activity of the nanoalloys also changes. The rate and magnitude of the changes may be rationalized when the limits of traditional relationships used to connect the composition and structure of nanoalloys with their electrocatalytic activity and stability, such as Vegard's law, are recognized. In particular, deviations from the law inherent for Pt-3d metal nanoalloys can well explain their behaviour under operating conditions. Moreover, it appears that factors behind the remarkable electrocatalytic activity of Pt-3d metal nanoalloys, such as the large surface to unit volume ratio and "size misfit" of the constituent Pt and 3d-transition metal atoms, also contribute to their instability inside fuel cells. The new insight into the atomic-level evolution of nanoalloy electrocatalysts during their lifetime is likely to inspire new efforts to stabilize transient structure states beneficial to their activity and stability under operating conditions, if not synthesize them directly.

9.
J Synchrotron Radiat ; 26(Pt 2): 373-381, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30855245

RESUMEN

The ability to store, organize, process and distribute experimental data effectively, efficiently and securely is particularly important for large user facilities like the Advanced Photon Source. In this article, the deployment of the APS Data Management System (DM) at the 1-ID and 6-BM beamlines of the APS is described. These two beamlines support a wide range of experimental techniques and generate data at relatively high rates, making them ideal candidates to illustrate the deployment and customization of the DM system and its tools. Using several usage examples at these beamlines, various capabilities of the DM system are described.

10.
Nat Commun ; 9(1): 3386, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30140001

RESUMEN

Hydrogen embrittlement (HE) causes sudden, costly failures of metal components across a wide range of industries. Yet, despite over a century of research, the physical mechanisms of HE are too poorly understood to predict HE-induced failures with confidence. We use non-destructive, synchrotron-based techniques to investigate the relationship between the crystallographic character of grain boundaries and their susceptibility to hydrogen-assisted fracture in a nickel superalloy. Our data lead us to identify a class of grain boundaries with striking resistance to hydrogen-assisted crack propagation: boundaries with low-index planes (BLIPs). BLIPs are boundaries where at least one of the neighboring grains has a low Miller index facet-{001}, {011}, or {111}-along the grain boundary plane. These boundaries deflect propagating cracks, toughening the material and improving its HE resistance. Our finding paves the way to improved predictions of HE based on the density and distribution of BLIPs in metal microstructures.

11.
Rev Sci Instrum ; 88(1): 015111, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28147640

RESUMEN

We present an in situ Radiated Materials (iRadMat) experimental module designed to interface with a servo-hydraulic load frame for X-ray measurements at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermo-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. The iRadMat is a radiation-shielded vacuum heating system with the sample rotation-under-load capability. We describe the design features and performances of the iRadMat and present a dataset from a 300 °C uniaxial tensile test of a neutron-irradiated pure Fe specimen to demonstrate its capabilities.

12.
Rev Sci Instrum ; 86(9): 093902, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26429452

RESUMEN

High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

13.
Nat Commun ; 4: 2255, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23929396

RESUMEN

Non-aqueous lithium-air batteries represent the next-generation energy storage devices with very high theoretical capacity. The benefit of lithium-air batteries is based on the assumption that the anodic lithium is completely reversible during the discharge-charge process. Here we report our investigation on the reversibility of the anodic lithium inside of an operating lithium-air battery using spatially and temporally resolved synchrotron X-ray diffraction and three-dimensional micro-tomography technique. A combined electrochemical process is found, consisting of a partial recovery of lithium metal during the charging cycle and a constant accumulation of lithium hydroxide under both charging and discharging conditions. A lithium hydroxide layer forms on the anode separating the lithium metal from the separator. However, numerous microscopic 'tunnels' are also found within the hydroxide layer that provide a pathway to connect the metallic lithium with the electrolyte, enabling sustained ion-transport and battery operation until the total consumption of lithium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...