Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 174: 360-366, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30472622

RESUMEN

Surface modification with functional materials, such as anti-fouling or thermal responsive polymers, on biomedical devices benefits their clinical performance. Simple and versatile technologies, which could be applied to a wide variety of substrates, are still highly desirable. Chemical vapor deposition (CVD) of 4-benzoyl-[2,2]paracyclophane (Benzoyl-PPX) layers attracts much attention because the photoreactive platform could be deposited onto almost every substrate for the conjugation of functional molecules. In this study, poly(ethylene glycol) (PEG) was conjugated onto Benzoyl-PPX via UV illumination. The deposited PEG films could effectively reduce protein adsorption and cell attachment. The low-fouling properties of the PEG films were positively correlated with the molecular weight and concentration of PEG. We found that a PEG film, thicker than 16 nm and with a water contact angle of 30°, is a prerequisite for effective inhibition of cell attachment. We also demonstrated that the PEG coating was stable under acidic and basic environments. Furthermore, poly(N-isopropyl acrylamide), PNIPAAm, could be also tethered on the Benzoyl-PPX via UV illumination, and possessed thermal-responsive properties. Intact cell sheets could be released from the PNIPAAm film by decreasing culture temperature. The results indicate that Benzoyl-PPX is an excellent photoreactive platform for the conjugation of functional polymers for modulation of cell attachment.


Asunto(s)
Adhesión Celular/fisiología , Fibroblastos/fisiología , Procesos Fotoquímicos , Compuestos Policíclicos/química , Polímeros/metabolismo , Xilenos/química , Animales , Células Cultivadas , Fibroblastos/citología , Ratones , Polímeros/química
2.
Langmuir ; 30(47): 14257-62, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25377994

RESUMEN

A surface that resists protein adsorption and cell adhesion is highly desirable for many biomedical applications such as blood-contact devices and biosensors. In this study, we fabricated a carboxybetaine-containing surface and evaluated its antifouling efficacy. First, an amine-containing substrate was created by chemical vapor deposition of 4-aminomethyl-p-xylylene-co-p-xylylene (Amino-PPX). Aldehyde-ended carboxybetaine molecules were synthesized and conjugated onto Amino-PPX. The carboxybetaine-PPX surface greatly reduced protein adsorption and cell adhesion. The attachment of L929 cells on the carboxybetaine-PPX surface was reduced by 87% compared to the cell adhesion on Amino-PPX. Furthermore, RGD peptides could be conjugated on carboxybetaine-PPX to mediate specific cell adhesion. In conclusion, we demonstrate that a surface decoration with monocarboxybetaine molecules is useful for antifouling applications.


Asunto(s)
Compuestos de Anilina/química , Betaína/química , Polímeros/química , Proteínas/química , Adsorción , Adhesión Celular/efectos de los fármacos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...