Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Chem Toxicol ; : 1-8, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36752088

RESUMEN

Vigabatrin (VGB) is a gammaaminobutyric acid-ergic (GABA-ergic) antiepileptic drug (AED) and is one of 2 approved drugs available to treat infantile spasms (IS). The aim of this study is to elucidate conflicting data on the toxic effects of VGB and to obtain detailed information about its possible cytogenotoxic effects in human lymphocytes. For this purpose, in vitro Chromosomal Aberration (CA), Sister Chromatid Exchange (SCE), Micronucleus (MN) tests, and Comet Assay were performed to determine possible genotoxic and cytotoxic effects of VGB. In addition, the binding energy level of VGB to DNA was determined in silico by molecular docking. The highest concentration (80 µg/ml) of VGB increased the SCE, CA, MN and micronucleated binuclear cell (BNMN) frequency significantly compared to the control after 24 and 48 hours of treatment. In the tail density and tail length parameters, the dose-dependent increase was found to be statistically significant compared to the control. At the 40 and 80 µg/ml concentrations of VGB for 48 hours caused a statistically significant increase in both CA/Cell and AC percentages, while MI and NDI decreased only significantly at the highest concentration (80 µg/ml) causing. In the Comet Assay head density, tail density and tail length parameters, the dose-dependent increase was found to be statistically significant compared to the control. Also, the in silico molecular docking analysis showed that VGB interacts with B-DNA close to the threshold binding energy. The lowest negative free binding energy (ΔG binding) was found as -5.13 kcal/mol. In conclusion, all results are evaluated together, it has been determined that VGB has cytogenotoxic effects in vitro and binds to DNA in silico with significant free binding energy.

2.
Drug Chem Toxicol ; 46(6): 1147-1153, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36278274

RESUMEN

Two different drug groups, typical (classic) and atypical (new), are used in the treatment of schizophrenia. Aripiprazole, an atypical antipsychotic chemical, is the active ingredient of the drug Abilify. This study was conducted to determine the possible genotoxic effect of aripiprazole. For this purpose, four different doses of aripiprazole (5; 10; 20, and 40 µg/mL) were examined with Chromosome Abnormality (CA), Sister Chromatid Exchange (SCE), Micronucleus (MN) tests. Based on these tests, Proliferation Index (PI), Percent Abnormal Cells (AC), Mitotic Index (MI), Micronuclear Binuclear Cell (MNBN), and Nuclear Division Index (NDI) levels were determined in human peripheral lymphocytes treated for 24 and 48 hours. Also, to determine possible binding sites of Aripiprazole on B-DNA molecular docking analysis was performed using AutoDock 4.0 (B-DNA dodecamer, PDB code: 1BNA). Aripiprazole binds to B-DNA with a very significant free binding energy (-11.88 Kcal/mol). According to our study, aripiprazole did not significantly change SCE, CA, AC percentage, MN frequencies when compared with control. According to these results, aripiprazole does not have a genotoxic effect. At the same time, no significant change was observed in the PI, MI, and NDI frequencies when compared with the control. In line with these results, it was observed that the use of aripiprazole in the treatment of schizophrenia did not pose any acute genotoxic and cytotoxic risk.


Asunto(s)
ADN Forma B , Humanos , Aripiprazol/toxicidad , Simulación del Acoplamiento Molecular , Células Cultivadas , Pruebas de Micronúcleos , Intercambio de Cromátides Hermanas , Aberraciones Cromosómicas/inducido químicamente , Linfocitos , Índice Mitótico , Mutágenos/farmacología
3.
Turk J Med Sci ; 52(1): 124-130, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36161592

RESUMEN

BACKGROUND: The main aim of the study is to assess expression levels of CDH1, FHIT, PTEN, and TTPAL genes in tumors and peripheral bloods of colorectal cancer patients in staged I-IV. METHODS: Gene expression analysis of related genes were performed for tumor tissues and peripheral blood samples of 51 colorectal cancer patients and colon tissues and blood samples of 5 healthy individuals. The real-time-PCR reaction method was used for the analysis. RESULTS: Alteration of mRNA levels of related genes in tumor tissues of colorectal cancer cases was determined compared to control tissues. GAPDH and TBP were used for the normalization. While the mRNA levels of CDH1 decreased, the mRNA level of the FHIT and TTPAL genes increased in the tumor tissues. There was no PTEN gene expression difference in tumor tissues (total). The mRNA levels of the CDH1 and PTEN genes were increased while the mRNA levels of FHIT and TTPAL genes decreased in the blood (total). T he mRNA levels of the CDH1 gene decreased at each stage (I-IV) in the tumor tissues and increased at each stage (I-IV) in the blood. T he PTEN gene mRNA levels at each stage were controversial. The mRNA levels of the FHIT gene increased at stage I-II-III, decreased at stage IV in the tissues and decreased at each stage (I-IV) in the blood. The mRNA levels of TTPAL gene increased at each stage (I-IV) in the tissues and decreased at each stage (I-IV) in the blood.


Asunto(s)
Ácido Anhídrido Hidrolasas , Neoplasias Colorrectales , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Antígenos CD/genética , Cadherinas/genética , Neoplasias Colorrectales/patología , Humanos , Proteínas de Neoplasias , Fosfohidrolasa PTEN/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA