Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(13): e2308084, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38243883

RESUMEN

Ammonia is an essential commodity in the food and chemical industry. Despite the energy-intensive nature, the Haber-Bosch process is the only player in ammonia production at large scales. Developing other strategies is highly desirable, as sustainable and decentralized ammonia production is crucial. Electrochemical ammonia production by directly reducing nitrogen and nitrogen-based moieties powered by renewable energy sources holds great potential. However, low ammonia production and selectivity rates hamper its utilization as a large-scale ammonia production process. Creating effective and selective catalysts for the electrochemical generation of ammonia is critical for long-term nitrogen fixation. Single-atom alloys (SAAs) have become a new class of materials with distinctive features that may be able to solve some of the problems with conventional heterogeneous catalysts. The design and optimization of SAAs for electrochemical ammonia generation have recently been significantly advanced. This comprehensive review discusses these advancements from theoretical and experimental research perspectives, offering a fundamental understanding of the development of SAAs for ammonia production.

2.
Nanomaterials (Basel) ; 13(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38133017

RESUMEN

Preserving ultrasmall sizes of metal particles is a key challenge in the study of heterogeneous metal-based catalysis. Confining the ultrasmall metal clusters in a well-defined crystalline porous zeolite has emerged as a promising approach to stabilize these metal species. Successful encapsulation can be achieved by the addition of ligated metal complexes to zeolite synthesis gel before hydrothermal synthesis. However, controlling the metal particle size during post-reduction treatment remains a major challenge in this approach. Herein, an in situ incorporation strategy of pre-made atomically precise gold clusters within Na-LTA zeolite was established for the first time. With the assistance of mercaptosilane ligands, the gold clusters were successfully incorporated within the Na-LTA without premature precipitation and metal aggregation during the synthesis. We have demonstrated that the confinement of gold clusters within the zeolite framework offers high stability against sintering, leading to superior CO oxidation catalytic performance (up to 12 h at 30 °C, with a space velocity of 3000 mL g-1 h-1).

3.
Small ; 18(48): e2204553, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36135974

RESUMEN

Growth of semiconductor heterojunction nanoarrays directly on conductive substrates represents a promising strategy toward high-performance photoelectrodes for photoelectrochemical (PEC) water splitting. By controlling the growth conditions, heterojunction nanoarrays with different morphologies and semiconductor components can be fabricated, resulting in greatly enhanced light-absorption properties, stabilities, and PEC activities. Herein, recent progress in the development of self-supported heterostructured semiconductor nanoarrays as efficient photoanode catalysts for water oxidation is reviewed. Synthetic methods for the fabrication of heterojunction nanoarrays with specific compositions and structures are first discussed, including templating methods, wet chemical syntheses, electrochemical approaches and chemical vapor deposition (CVD) methods. Then, various heterojunction nanoarrays that have been reported in recent years based on particular core semiconductor scaffolds (e.g., TiO2 , ZnO, WO3 , Fe2 O3 , etc.) are summarized, placing strong emphasis on the synergies generated at the interface between the semiconductor components that can favorably boost PEC water oxidation. Whilst strong progress has been made in recent years to enhance the visible-light responsiveness, photon-to-O2 conversion efficiency and stability of photoanodes based on heterojunction nanoarrays, further advancements in all these areas are needed for PEC water splitting to gain any traction alongside photovoltaic-electrochemical (PV-EC) systems as a viable and cost-effective route toward the hydrogen economy.


Asunto(s)
Semiconductores , Agua , Gases , Hidrógeno , Conductividad Eléctrica
4.
Small ; 16(12): e1903321, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31489781

RESUMEN

Transparent conducting oxides (TCO) have integral and emerging roles in photovoltaic, thermoelectric energy conversion, and more recently, photocatalytic systems. The functional properties of TCOs, and thus their role in these applications, are often mediated by the bulk electronic band structure but are also strongly influenced by the electronic structure of the native surface 2D electron gas (2DEG), particularly under operating conditions. This study investigates the 2DEG, and its response to changes in chemistry, at the (111) surface of the model TCO In2 O3 , through angle resolved and core level X-ray photoemission spectroscopy. It is found that the itinerant charge carriers of the 2DEG reside in two quantum well subbands penetrating up to 65 Å below the surface. The charge carrier concentration of this 2DEG, and thus the high surface n-type conductivity, emerges from donor-type oxygen vacancies of surface character and proves to be remarkably robust against surface absorbents and contamination. The optical transparency, however, may rely on the presence of ubiquitous surface adsorbed oxygen groups and hydrogen defect states that passivate localized oxygen vacancy states in the bandgap of In2 O3 .

5.
J Phys Chem Lett ; 6(22): 4627-32, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26545303

RESUMEN

Hydrogenated TiO2 (H-TiO2) is touted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using nuclear reaction analysis (NRA), Rutherford backscattering spectrometry, ultraviolet photoelectron spectroscopy, and X-ray photoelectron spectroscopy. Protons (40 keV) implanted at a ∼2 atom % level within a ∼120 nm wide profile of rutile TiO2(110) were situated ∼300 nm below the surface. NRA revealed that this H-profile broadened toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (∼800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile at low temperatures, as well as its interfacial activity toward reduction, significantly limits the utilization of H-TiO2 as a photocatalyst.

6.
Lab Chip ; 13(22): 4312-6, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24080639

RESUMEN

By use of synchrotron X-ray fluorescence and Rutherford backscattering spectrometry, we show the SU-8 soft lithographic process contaminates PDMS. Residues of the antimony containing photoinitiator are transferred from the master mold to the surface of PDMS, uncontrollably intensifying the surface potential, leading to electroosmotic flow variability in PDMS microfluidic devices.


Asunto(s)
Dimetilpolisiloxanos/química , Técnicas Analíticas Microfluídicas/instrumentación , Antimonio/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...