Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mil Med ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38401164

RESUMEN

INTRODUCTION: MRI represents one of the clinical tools at the forefront of research efforts aimed at identifying diagnostic and prognostic biomarkers following traumatic brain injury (TBI). Both volumetric and diffusion MRI findings in mild TBI (mTBI) are mixed, making the findings difficult to interpret. As such, additional research is needed to continue to elucidate the relationship between the clinical features of mTBI and quantitative MRI measurements. MATERIAL AND METHODS: Volumetric and diffusion imaging data in a sample of 976 veterans and service members from the Chronic Effects of Neurotrauma Consortium and now the Long-Term Impact of Military-Relevant Brain Injury Consortium observational study of the late effects of mTBI in combat with and without a history of mTBI were examined. A series of regression models with link functions appropriate for the model outcome were used to evaluate the relationships among imaging measures and clinical features of mTBI. Each model included acquisition site, participant sex, and age as covariates. Separate regression models were fit for each region of interest where said region was a predictor. RESULTS: After controlling for multiple comparisons, no significant main effect was noted for comparisons between veterans and service members with and without a history of mTBI. However, blast-related mTBI were associated with volumetric reductions of several subregions of the corpus callosum compared to non-blast-related mTBI. Several volumetric (i.e., hippocampal subfields, etc.) and diffusion (i.e., corona radiata, superior longitudinal fasciculus, etc.) MRI findings were noted to be associated with an increased number of repetitive mTBIs versus. CONCLUSIONS: In deployment-related mTBI, significant findings in this cohort were only observed when considering mTBI sub-groups (blast mechanism and total number/dose). Simply comparing healthy controls and those with a positive mTBI history is likely an oversimplification that may lead to non-significant findings, even in consortium analyses.

2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338752

RESUMEN

More than 75% of traumatic brain injuries (TBIs) are mild (mTBI) and military service members often experience repeated combat-related mTBI. The chronic comorbidities concomitant with repetitive mTBI (rmTBI) include depression, post-traumatic stress disorder or neurological dysfunction. This study sought to determine a long noncoding RNA (lncRNA) expression signature in serum samples that correlated with rmTBI years after the incidences. Serum samples were obtained from Long-Term Impact of Military-Relevant Brain-Injury Consortium Chronic Effects of Neurotrauma Consortium (LIMBIC CENC) repository, from participants unexposed to TBI or who had rmTBI. Four lncRNAs were identified as consistently present in all samples, as detected via droplet digital PCR and packaged in exosomes enriched for CNS origin. The results, using qPCR, demonstrated that the lncRNA VLDLR-AS1 levels were significantly lower among individuals with rmTBI compared to those with no lifetime TBI. ROC analysis determined an AUC of 0.74 (95% CI: 0.6124 to 0.8741; p = 0.0012). The optimal cutoff for VLDLR-AS1 was ≤153.8 ng. A secondary analysis of clinical data from LIMBIC CENC was conducted to evaluate the psychological symptom burden, and the results show that lncRNAs VLDLR-AS1 and MALAT1 are correlated with symptoms of depression. In conclusion, lncRNA VLDLR-AS1 may serve as a blood biomarker for identifying chronic rmTBI and depression in patients.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , ARN Largo no Codificante , Veteranos , Humanos , Veteranos/psicología , Conmoción Encefálica/epidemiología , Conmoción Encefálica/genética , Conmoción Encefálica/complicaciones , ARN Largo no Codificante/genética , Depresión/genética , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/complicaciones
3.
J Neurotrauma ; 41(1-2): 32-40, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37694678

RESUMEN

Mild traumatic brain injury (mTBI) is the most common form of brain injury. While most individuals recover from mTBI, roughly 20% experience persistent symptoms, potentially including reduced fine motor control. We investigate relationships between regional white matter organization and subcortical volumes associated with performance on the Grooved Pegboard (GPB) test in a large cohort of military Service Members and Veterans (SM&Vs) with and without a history of mTBI(s). Participants were enrolled in the Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium. SM&Vs with a history of mTBI(s) (n = 847) and without mTBI (n = 190) underwent magnetic resonance imaging and the GPB test. We first examined between-group differences in GPB completion time. We then investigated associations between GPB performance and regional structural imaging measures (tractwise diffusivity, subcortical volumes, and cortical thickness) in SM&Vs with a history of mTBI(s). Lastly, we explored whether mTBI history moderated associations between imaging measures and GPB performance. SM&Vs with mTBI(s) performed worse than those without mTBI(s) on the non-dominant hand GPB test at a trend level (p < 0.1). Higher fractional anisotropy (FA) of tracts including the posterior corona radiata, superior longitudinal fasciculus, and uncinate fasciculus were associated with better GPB performance in the dominant hand in SM&Vs with mTBI(s). These findings support that the organization of several white matter bundles are associated with fine motor performance in SM&Vs. We did not observe that mTBI history moderated associations between regional FA and GPB test completion time, suggesting that chronic mTBI may not significantly influence fine motor control.


Asunto(s)
Conmoción Encefálica , Lesiones Encefálicas , Personal Militar , Veteranos , Sustancia Blanca , Humanos , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/complicaciones , Sustancia Blanca/diagnóstico por imagen , Lesiones Encefálicas/complicaciones , Encéfalo
4.
Front Neurol ; 14: 1276437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156092

RESUMEN

Introduction: The relation between traumatic brain injury (TBI), its acute and chronic symptoms, and the potential for remote neurodegenerative disease is a priority for military research. Structural and functional connectivity (FC) of the basal ganglia, involved in motor tasks such as walking, are altered in some samples of Service Members and Veterans with TBI, but any behavioral implications are unclear and could further depend on the context in which the TBI occurred. Methods: In this study, FC from caudate and pallidum seeds was measured in Service Members and Veterans with a history of mild TBI that occurred during combat deployment, Service Members and Veterans whose mild TBI occurred outside of deployment, and Service Members and Veterans who had no lifetime history of TBI. Results: FC patterns differed for the two contextual types of mild TBI. Service Members and Veterans with deployment-related mild TBI demonstrated increased FC between the right caudate and lateral occipital regions relative to both the non-deployment mild TBI and TBI-negative groups. When evaluating the association between FC from the caudate and gait, the non-deployment mild TBI group showed a significant positive relationship between walking time and FC with the frontal pole, implicated in navigational planning, whereas the deployment-related mild TBI group trended towards a greater negative association between walking time and FC within the occipital lobes, associated with visuo-spatial processing during navigation. Discussion: These findings have implications for elucidating subtle motor disruption in Service Members and Veterans with deployment-related mild TBI. Possible implications for future walking performance are discussed.

5.
Mil Med ; 188(Suppl 6): 124-133, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37948207

RESUMEN

INTRODUCTION: Because chronic difficulties with cognition and well-being are common after mild traumatic brain injury (mTBI) and aerobic physical activity and exercise (PAE) is a potential treatment and mitigation strategy, we sought to determine their relationship in a large sample with remote mTBI. MATERIALS AND METHODS: The Long-Term Impact of Military-Relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium prospective longitudinal study is a national multicenter observational study of combat-exposed service members and veterans. Study participants with positive mTBI histories (n = 1,087) were classified as "inactive" (23%), "insufficiently active" (46%), "active" (19%), or "highly active" (13%) based on the aerobic PAE level. The design was a cross-sectional analysis with multivariable regression. PAE was reported on the Behavioral Risk Factor Surveillance System. Preselected primary outcomes were seven well-validated cognitive performance tests of executive function, learning, and memory: The California Verbal Learning Test-Second Edition Long-Delay Free Recall and Total Recall, Brief Visuospatial Memory Test-Revised Total Recall, Trail-Making Test-Part B, and NIH Toolbox for the Assessment of Neurological Behavior and Function Cognition Battery Picture Sequence Memory, Flanker, and Dimensional Change Card Sort tests. Preselected secondary outcomes were standardized self-report questionnaires of cognitive functioning, life satisfaction, and well-being. RESULTS: Across the aerobic activity groups, cognitive performance tests were not significantly different. Life satisfaction and overall health status scores were higher for those engaging in regular aerobic activity. Exploratory analyses also showed better working memory and verbal fluency with higher aerobic activity levels. CONCLUSIONS: An association between the aerobic activity level and the preselected primary cognitive performance outcome was not demonstrated using this study sample and methods. However, higher aerobic activity levels were associated with better subjective well-being. This supports a clinical recommendation for regular aerobic exercise among persons with chronic or remote mTBI. Future longitudinal analyses of the exercise-cognition relationship in chronic mTBI populations are recommended.


Asunto(s)
Conmoción Encefálica , Veteranos , Humanos , Conmoción Encefálica/epidemiología , Estudios Transversales , Estudios Prospectivos , Estudios Longitudinales , Pruebas Neuropsicológicas , Cognición , Veteranos/psicología
6.
Front Neurol ; 14: 1242871, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808506

RESUMEN

Background: Headache (HA) is a common persistent complaint following mild traumatic brain injury (mTBI), but the association with remote mTBI is not well established, and risk factors are understudied. Objective: Determine the relationship of mTBI history and other factors with HA prevalence and impact among combat-exposed current and former service members (SMs). Design: Secondary cross-sectional data analysis from the Long-Term Impact of Military-Relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium prospective longitudinal study. Methods: We examined the association of lifetime mTBI history, demographic, military, medical and psychosocial factors with (1) HA prevalence ("lately, have you experienced headaches?") using logistic regression and (2) HA burden via the Headache Impact Test-6 (HIT-6) using linear regression. Each lifetime mTBI was categorized by mechanism (blast-related or not) and setting (combat deployed or not). Participants with non-credible symptom reporting were excluded, leaving N = 1,685 of whom 81% had positive mTBI histories. Results: At a median 10 years since last mTBI, mTBI positive participants had higher HA prevalence (69% overall, 78% if 3 or more mTBIs) and greater HA burden (67% substantial/severe impact) than non-TBI controls (46% prevalence, 54% substantial/severe impact). In covariate-adjusted analysis, HA prevalence was higher with greater number of blast-related mTBIs (OR 1.81; 95% CI 1.48, 2.23), non-blast mTBIs while deployed (OR 1.42; 95% CI 1.14, 1.79), or non-blast mTBIs when not deployed (OR 1.23; 95% CI 1.02, 1.49). HA impact was only higher with blast-related mTBIs. Female identity, younger age, PTSD symptoms, and subjective sleep quality showed effects in both prevalence and impact models, with the largest mean HIT-6 elevation for PTSD symptoms. Additionally, combat deployment duration and depression symptoms were factors for HA prevalence, and Black race and Hispanic/Latino ethnicity were factors for HA impact. In sensitivity analyses, time since last mTBI and early HA onset were both non-significant. Conclusion: The prevalence of HA symptoms among formerly combat-deployed veterans and SMs is higher with more lifetime mTBIs regardless of how remote. Blast-related mTBI raises the risk the most and is uniquely associated with elevated HA burden. Other demographic and potentially modifiable risk factors were identified that may inform clinical care.

7.
Neurotherapeutics ; 20(6): 1629-1640, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37697134

RESUMEN

Multiple phase III randomized controlled trials (RCTs) for pharmacologic interventions in traumatic brain injury (TBI) have failed despite promising results in experimental models. The heterogeneity of TBI, in terms of pathomechanisms and impacted brain structures, likely contributes to these failures. Biomarkers have been recommended to identify patients with relevant pathology (predictive biomarkers) and confirm target engagement and monitor therapy response (pharmacodynamic biomarkers). Our group focuses on traumatic cerebrovascular injury as an understudied endophenotype of TBI and is validating a predictive and pharmacodynamic imaging biomarker (cerebrovascular reactivity; CVR) in moderate-severe TBI. We aim to extend these studies to milder forms of TBI to determine the optimal dose of sildenafil for maximal improvement in CVR. We will conduct a phase II dose-finding study involving 160 chronic TBI patients (mostly mild) using three doses of sildenafil, a phosphodiesterase-5 (PDE-5) inhibitor. The study measures baseline CVR and evaluates the effect of escalating sildenafil doses on CVR improvement. A 4-week trial of thrice daily sildenafil will assess safety, tolerability, and clinical efficacy. This dual-site 4-year study, funded by the Department of Defense and registered in ClinicalTrials.gov (NCT05782244), plans to launch in June 2023. Biomarker-informed RCTs are essential for developing effective TBI interventions, relying on an understanding of underlying pathomechanisms. Traumatic microvascular injury (TMVI) is an attractive mechanism which can be targeted by vaso-active drugs such as PDE-5 inhibitors. CVR is a potential predictive and pharmacodynamic biomarker for targeted interventions aimed at TMVI. (Trial registration: NCT05782244, ClinicalTrials.gov ).


Asunto(s)
Lesiones Traumáticas del Encéfalo , Inhibidores de Fosfodiesterasa 5 , Humanos , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5 , Citrato de Sildenafil/uso terapéutico , Circulación Cerebrovascular/fisiología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Biomarcadores
8.
Hum Brain Mapp ; 44(5): 1888-1900, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36583562

RESUMEN

Traumatic brain injury (TBI) in military populations can cause disruptions in brain structure and function, along with cognitive and psychological dysfunction. Diffusion magnetic resonance imaging (dMRI) can detect alterations in white matter (WM) microstructure, but few studies have examined brain asymmetry. Examining asymmetry in large samples may increase sensitivity to detect heterogeneous areas of WM alteration in mild TBI. Through the Enhancing Neuroimaging Genetics Through Meta-Analysis Military-Relevant Brain Injury working group, we conducted a mega-analysis of neuroimaging and clinical data from 16 cohorts of Active Duty Service Members and Veterans (n = 2598). dMRI data were processed together along with harmonized demographic, injury, psychiatric, and cognitive measures. Fractional anisotropy in the cingulum showed greater asymmetry in individuals with deployment-related TBI, driven by greater left lateralization in TBI. Results remained significant after accounting for potentially confounding variables including posttraumatic stress disorder, depression, and handedness, and were driven primarily by individuals whose worst TBI occurred before age 40. Alterations in the cingulum were also associated with slower processing speed and poorer set shifting. The results indicate an enhancement of the natural left laterality of the cingulum, possibly due to vulnerability of the nondominant hemisphere or compensatory mechanisms in the dominant hemisphere. The cingulum is one of the last WM tracts to mature, reaching peak FA around 42 years old. This effect was primarily detected in individuals whose worst injury occurred before age 40, suggesting that the protracted development of the cingulum may lead to increased vulnerability to insults, such as TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Sustancia Blanca , Humanos , Adulto , Sustancia Blanca/patología , Pruebas Neuropsicológicas , Lesiones Encefálicas/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Encéfalo
9.
JAMA Neurol ; 79(11): 1122-1129, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36066882

RESUMEN

Importance: Traumatic brain injury (TBI) was common among US service members deployed to Iraq and Afghanistan. Although there is some evidence to suggest that TBI increases the risk of cardiovascular disease (CVD), prior reports were predominantly limited to cerebrovascular outcomes. The potential association of TBI with CVD has not been comprehensively examined in post-9/11-era veterans. Objective: To determine the association between TBI and subsequent CVD in post-9/11-era veterans. Design, Setting, and Participants: This was a retrospective cohort study conducted from October 1, 1999, to September 30, 2016. Participants were followed up until December 31, 2018. Included in the study were administrative data from the US Department of Veterans Affairs and the Department of Defense from the Long-term Impact of Military-Relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium. Participants were excluded if dates did not overlap with the study period. Data analysis was conducted between November 22, 2021, and June 28, 2022. Exposures: History of TBI as measured by diagnosis in health care records. Main Outcomes and Measures: Composite end point of CVD: coronary artery disease, stroke, peripheral artery disease, and cardiovascular death. Results: Of the 2 530 875 veterans from the consortium, after exclusions, a total of 1 559 928 veterans were included in the analysis. A total of 301 169 veterans (19.3%; median [IQR] age, 27 [23-34] years; 265 217 male participants [88.1]) with a TBI history and 1 258 759 veterans (80.7%; median [IQR] age, 29 [24-39] years; 1 012 159 male participants [80.4%]) without a TBI history were included for analysis. Participants were predominately young (1 058 054 [67.8%] <35 years at index date) and male (1 277 376 [81.9%]). Compared with participants without a history of TBI, diagnoses of mild TBI (hazard ratio [HR], 1.62; 95% CI, 1.58-1.66; P < .001), moderate to severe TBI (HR, 2.63; 95% CI, 2.51-2.76; P < .001), and penetrating TBI (HR, 4.60; 95% CI, 4.26-4.96; P < .001) were associated with CVD in adjusted models. In analyses of secondary outcomes, all severities of TBI were associated with the individual components of the composite outcome except penetrating TBI and CVD death. Conclusions and Relevance: Results of this cohort study suggest that US veterans with a TBI history were more likely to develop CVD compared with veterans without a TBI history. Given the relatively young age of the cohort, these results suggest that there may be an increased burden of CVD as these veterans age and develop other CVD risk factors. Future studies are needed to determine if the increased risk associated with TBI is modifiable.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades Cardiovasculares , Veteranos , Masculino , Humanos , Estados Unidos/epidemiología , Adulto , Estudios de Cohortes , Estudios Retrospectivos , Enfermedades Cardiovasculares/epidemiología , Lesiones Traumáticas del Encéfalo/epidemiología , Lesiones Traumáticas del Encéfalo/complicaciones , Guerra de Irak 2003-2011 , Campaña Afgana 2001-
10.
Contemp Clin Trials ; 119: 106851, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35842107

RESUMEN

INTRODUCTION: Post-traumatic headache (PTH) is common after traumatic brain injury (TBI), especially among active-duty service members (SMs), affecting up to 35% of patients with chronic TBI. Persistent PTH is disabling and frequently unresponsive to treatment and is often migrainous. Here, we describe a trial assessing whether dietary modifications to increase n-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and reduce n-6 linoleic acid (LA), will alter nociceptive lipid mediators and result in clinical improvements in persistent PTH. METHODS: This prospective, randomized, controlled trial tests the efficacy, safety, and biochemical effects of targeted, controlled alterations in dietary n-3 and n-6 fatty acids in 122 adult SMs and military healthcare beneficiaries with diagnosed TBI associated with actively managed persistent frequent (>8 /month) PTH with migraine. Following a 4-week baseline, participants are randomized to one of two equally intensive dietary regimens for 12 additional weeks: 1) increased n-3 EPA + DHA with low n-6 LA (H3L6); 2) usual US dietary content of n-3 and n-6 fatty acids (Control). During the intervention, participants receive diet arm-specific study oils and foods sufficient for 75% of caloric needs and comprehensive dietary counseling. Participants complete daily headache diaries throughout the intervention. Clinical outcomes, including the Headache Impact Test (HIT-6), headache hours per day, circulating blood fatty acid levels, and bioactive metabolites, are measured pre-randomization and at 6 and 12 weeks. Planned primary analyses include pre-post comparisons of treatment groups on clinical measures using ANCOVA and mixed-effects models. Similar approaches to explore biochemical and exploratory clinical outcomes are planned. CLINICALTRIALS: gov registration: NCT03272399.


Asunto(s)
Ácidos Grasos Omega-3 , Cefalea Postraumática , Adulto , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Ácidos Grasos Omega-6 , Cefalea , Humanos , Dolor , Manejo del Dolor , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto
11.
J Vis Exp ; (184)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35723463

RESUMEN

Cerebrovascular reactivity (CVR) is the capacity of blood vessels in the brain to alter cerebral blood flow (either with dilation or constriction) in response to chemical or physical stimuli. The amount of reactivity in the cerebral microvasculature depends on the integrity of the capacitance vasculature and is the primary function of endothelial cells. CVR is, therefore, an indicator of the microvasculature's physiology and overall health. Imaging methods that can measure CVR are available but can be costly, and require magnetic resonance imaging centers and technical expertise. In this study, we used fNIRS technology to monitor changes of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in the cerebral microvasculature to assess the CVR of 15 healthy controls (HC) in response to a vasoactive stimulus (inhaled 5% carbon dioxide or CO2). Our results suggest that this is a promising imaging technology that offers a non-invasive, accurate, portable, and cost-effective method of mapping cortical CVR and associated microvasculature function, resulting from a traumatic brain injury or other conditions associated with cerebral microvasculopathy.


Asunto(s)
Células Endoteliales , Espectroscopía Infrarroja Corta , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Dióxido de Carbono , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos
12.
Brain Inj ; 36(5): 652-661, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35322723

RESUMEN

BACKGROUND: Blast traumatic brain injury (TBI) and subconcussive blast exposure have been associated, pathologically, with chronic traumatic encephalopathy (CTE) and, clinically, with cognitive and affective symptoms, but the underlying pathomechanisms of these associations are not well understood. We hypothesized that exosomal microRNA (miRNA) expression, and their relation to neurobehavioral outcomes among Veterans with blunt or blast mild TBI (mTBI) may provide insight into possible mechanisms for these associations and therapeutic targets. METHODS: This is a subanalysis of a larger Chronic Effects of Neurotrauma Consortium Biomarker Discovery Project. Participants (n = 152) were divided into three groups: Controls (n = 35); Blunt mTBI only (n = 54); and Blast/blast+blunt mTBI (n = 63). Postconcussive and post-traumatic stress symptoms were evaluated using the NSI and PCL-5, respectively. Exosomal levels of 798 miRNA expression were measured. RESULTS: In the blast mTBI group, 23 differentially regulated miRNAs were observed compared to the blunt mTBI group and 23 compared to controls. From the pathway analysis, significantly dysregulated miRNAs in the blast exposure group correlated with inflammatory, neurodegenerative, and androgen receptor pathways. DISCUSSION: Our findings suggest that chronic neurobehavioral symptoms after blast TBI may pathomechanistically relate to dysregulated cellular pathways involved with neurodegeneration, inflammation, and central hormonal regulation.


Asunto(s)
Traumatismos por Explosión , Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , MicroARNs , Trastornos por Estrés Postraumático , Veteranos , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/genética , Traumatismos por Explosión/psicología , Conmoción Encefálica/complicaciones , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/genética , Explosiones , Humanos , MicroARNs/genética , Trastornos por Estrés Postraumático/complicaciones , Veteranos/psicología
13.
Brain Inj ; 36(5): 633-643, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35188022

RESUMEN

OBJECTIVE: Following mild traumatic brain injury (mTBI), many individuals suffer from persistent post-concussive, depressive, post-traumatic stress, and sleep-related symptoms. Findings from self-report scales link these symptoms to biomarkers of neurodegeneration, although the underlying pathophysiology is unclear. Each linked self-report scale includes sleep items, raising the possibility that despite varied symptomology, disordered sleep may underlie these associations. To isolate sleep effects, we examined associations between post-mTBI biomarkers of neurodegeneration and symptom scales according to composite, non-sleep, and sleep components. METHODS: Plasma biomarkers and self-report scales were obtained from 143 mTBI-positive warfighters. Pearson's correlations and regression models were constructed to estimate associations between total, sleep, and non-sleep scale items with biomarker levels, and with measured sleep quality. RESULTS: Symptom severity positively correlated with biomarker levels across scales. Biomarker associations were largely unchanged when sleep items were included, excluded, or considered in isolation. Pittsburgh Sleep Quality Index demonstrated strong correlations with sleep and non-sleep items of all scales. CONCLUSION: The congruency of associations raises the possibility of a common pathophysiological process underlying differing symptomologies. Given its role in neurodegeneration and mood dysregulation, sleep physiology seems a likely candidate. Future longitudinal studies should test this hypothesis, with a focus on identifying novel sleep-related therapeutic targets.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Síndrome Posconmocional , Trastornos por Estrés Postraumático , Biomarcadores , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico , Lesiones Traumáticas del Encéfalo/complicaciones , Depresión/diagnóstico , Depresión/etiología , Humanos , Calidad del Sueño , Trastornos por Estrés Postraumático/complicaciones
14.
Brain Inj ; 36(5): 644-651, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35108129

RESUMEN

OBJECTIVE: Describe dementia cases identified through International Classification of Diseases (ICD) coding in the Long-term Impact of Military-relevant Brain Injury Consortium - Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC) multicenter prospective longitudinal study (PLS) of mild traumatic brain injury (mTBI). DESIGN: Descriptive case series using cross-sectional data. METHODS: Veterans Affairs (VA) health system data including ICD codes were obtained for 1563 PLS participants through the VA Informatics and Computing Infrastructure (VINCI). Demographic, injury, and clinical characteristics of Dementia positive and negative cases are described. RESULTS: Five cases of dementia were identified, all under 65 years old. The dementia cases all had a history of blast-related mTBI and all had self-reported functional problems and four had PTSD symptomatology at the clinical disorder range. Cognitive testing revealed some deficits especially in the visual memory and verbal learning and memory domains, and that two of the cases might be false positives. CONCLUSIONS: ICD codes for early dementia in the VA system have specificity concerns, but could be indicative of cognitive performance and self-reported cognitive function. Further research is needed to better determine links to blast exposure, blast-related mTBI, and PTSD to early dementia in the military population.


Asunto(s)
Traumatismos por Explosión , Conmoción Encefálica , Demencia , Trastornos por Estrés Postraumático , Veteranos , Campaña Afgana 2001- , Anciano , Conmoción Encefálica/complicaciones , Conmoción Encefálica/epidemiología , Estudios Transversales , Demencia/diagnóstico , Demencia/epidemiología , Demencia/etiología , Humanos , Clasificación Internacional de Enfermedades , Guerra de Irak 2003-2011 , Estudios Longitudinales , Estudios Prospectivos , Trastornos por Estrés Postraumático/diagnóstico , Trastornos por Estrés Postraumático/epidemiología , Trastornos por Estrés Postraumático/etiología , Veteranos/psicología
15.
Brain Inj ; 36(5): 662-672, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35125044

RESUMEN

OBJECTIVE: To determine if history of mild traumatic brain injury (mTBI) is associated with advanced or accelerated brain aging among the United States (US) military Service Members and Veterans. METHODS: Eight hundred and twenty-two participants (mean age = 40.4 years, 714 male/108 female) underwent MRI sessions at eight sites across the US. Two hundred and one participants completed a follow-up scan between five months and four years later. Predicted brain ages were calculated using T1-weighted MRIs and then compared with chronological ages to generate an Age Deviation Score for cross-sectional analyses and an Interval Deviation Score for longitudinal analyses. Participants also completed a neuropsychological battery, including measures of both cognitive functioning and psychological health. RESULT: In cross-sectional analyses, males with a history of deployment-related mTBI showed advanced brain age compared to those without (t(884) = 2.1, p = .038), while this association was not significant in females. In follow-up analyses of the male participants, severity of posttraumatic stress disorder (PTSD), depression symptoms, and alcohol misuse were also associated with advanced brain age. CONCLUSION: History of deployment-related mTBI, severity of PTSD and depression symptoms, and alcohol misuse are associated with advanced brain aging in male US military Service Members and Veterans.


Asunto(s)
Alcoholismo , Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Personal Militar , Trastornos por Estrés Postraumático , Veteranos , Adulto , Encéfalo , Conmoción Encefálica/psicología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Estudios Transversales , Femenino , Humanos , Masculino , Personal Militar/psicología , Neuroimagen , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/etiología , Estados Unidos , Veteranos/psicología
16.
Brain Inj ; 36(5): 620-627, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35125061

RESUMEN

OBJECTIVES: To assess traumatic brain injury (TBI)-related risks factors for early-onset dementia (EOD). BACKGROUND: Younger Post-9/11 Veterans may be at elevated risk for EOD due to high rates of TBI in early/mid adulthood. Few studies have explored the longitudinal relationship between traumatic brain injury (TBI) and the emergence of EOD subtypes. METHODS: This matched case-control study used data from the Veterans Health Administration (VHA) to identify Veterans with EOD. To address the low positive predictive value (PPV = 0.27) of dementia algorithms in VHA records, primary outcomes were Alzheimer's disease (AD) and frontotemporal dementia (FTD). Logistic regression identified conditions associated with dementia subtypes. RESULTS: The EOD cohort included Veterans with AD (n = 689) and FTD (n = 284). There were no significant demographic differences between the EOD cohort and their matched controls. After adjustment, EOD was significantly associated with history of TBI (OR: 3.05, 2.42-3.83), epilepsy (OR: 4.8, 3.3-6.97), other neurological conditions (OR: 2.0, 1.35-2.97), depression (OR: 1.35, 1.12-1.63) and cardiac disease (OR: 1.36, 1.1-1.67). CONCLUSION: Post-9/11 Veterans have higher odds of EOD following TBI. A sensitivity analysis across TBI severity confirmed this trend, indicating that the odds for both AD and FTD increased after more severe TBIs.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Demencia Frontotemporal , Veteranos , Adulto , Enfermedad de Alzheimer/complicaciones , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/epidemiología , Estudios de Casos y Controles , Demencia Frontotemporal/complicaciones , Demencia Frontotemporal/etiología , Humanos
17.
J Neurotrauma ; 39(7-8): 436-457, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35057637

RESUMEN

Multi-modal biomarkers (e.g., imaging, blood-based, physiological) of unique traumatic brain injury (TBI) endophenotypes are necessary to guide the development of personalized and targeted therapies for TBI. Optimal biomarkers will be specific, sensitive, rapidly and easily accessed, minimally invasive, cost effective, and bidirectionally translatable for clinical and research use. For both uses, understanding how TBI biomarkers change over time is critical to reliably identify appropriate time windows for an intervention as the injury evolves. Biomarkers that enable researchers and clinicians to identify cellular injury and monitor clinical improvement, inflection, arrest, or deterioration in a patient's clinical trajectory are needed for precision healthcare. Prognostic biomarkers that reliably predict outcomes and recovery windows to assess neurodegenerative change and guide decisions for return to play or duty are also important. TBI biomarkers that fill these needs will transform clinical practice and could reduce the patient's risk for long-term symptoms and lasting deficits. This article summarizes biomarkers currently under investigation and outlines necessary steps to achieve short- and long-term goals, including how biomarkers can advance TBI treatment and improve care for patients with TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/terapia , Humanos , Pronóstico
18.
Hum Brain Mapp ; 43(1): 149-166, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32476212

RESUMEN

Traumatic brain injury (TBI) is a major cause of disability worldwide, but the heterogeneous nature of TBI with respect to injury severity and health comorbidities make patient outcome difficult to predict. Injury severity accounts for only some of this variance, and a wide range of preinjury, injury-related, and postinjury factors may influence outcome, such as sex, socioeconomic status, injury mechanism, and social support. Neuroimaging research in this area has generally been limited by insufficient sample sizes. Additionally, development of reliable biomarkers of mild TBI or repeated subconcussive impacts has been slow, likely due, in part, to subtle effects of injury and the aforementioned variability. The ENIGMA Consortium has established a framework for global collaboration that has resulted in the largest-ever neuroimaging studies of multiple psychiatric and neurological disorders. Here we describe the organization, recent progress, and future goals of the Brain Injury working group.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Neuroimagen , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Humanos , Estudios Multicéntricos como Asunto
19.
Expert Rev Mol Diagn ; 21(12): 1303-1321, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34783274

RESUMEN

INTRODUCTION: Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia. AREAS COVERED: This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada. EXPERT OPINION: TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Bioensayo , Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico , Europa (Continente) , Humanos , Sistemas de Atención de Punto , Estados Unidos
20.
Front Pharmacol ; 12: 745348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690777

RESUMEN

Symptoms of post-traumatic stress disorder (PTSD) are common in military populations, and frequently associated with a history of combat-related mild traumatic brain injury (mTBI). In this study, we examined relationships between severity of PTSD symptoms and levels of extracellular vesicle (EV) proteins and miRNAs measured in the peripheral blood in a cohort of military service members and Veterans (SMs/Vs) with chronic mTBI(s). Participants (n = 144) were divided into groups according to mTBI history and severity of PTSD symptoms on the PTSD Checklist for DSM-5 (PCL-5). We analyzed EV levels of 798 miRNAs (miRNAs) as well as EV and plasma levels of neurofilament light chain (NfL), Tau, Amyloid beta (Aß) 42, Aß40, interleukin (IL)-10, IL-6, tumor necrosis factor-alpha (TNFα), and vascular endothelial growth factor (VEGF). We observed that EV levels of neurofilament light chain (NfL) were elevated in participants with more severe PTSD symptoms (PCL-5 ≥ 38) and positive mTBI history, when compared to TBI negative controls (p = 0.024) and mTBI participants with less severe PTSD symptoms (p = 0.006). Levels of EV NfL, plasma NfL, and hsa-miR-139-5p were linked to PCL-5 scores in regression models. Our results suggest that levels of NfL, a marker of axonal damage, are associated with PTSD symptom severity in participants with remote mTBI. Specific miRNAs previously linked to neurodegenerative and inflammatory processes, and glucocorticoid receptor signaling pathways, among others, were also associated with the severity of PTSD symptoms. Our findings provide insights into possible signaling pathways linked to the development of persistent PTSD symptoms after TBI and biological mechanisms underlying susceptibility to PTSD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...