Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853931

RESUMEN

Understanding the mechanisms of polyploidization in cardiomyocytes is crucial for advancing strategies to stimulate myocardial regeneration. Although endoreplication has long been considered the primary source of polyploid human cardiomyocytes, recent animal work suggests the potential for cardiomyocyte fusion. Moreover, the effects of polyploidization on the genomic-transcriptomic repertoire of human cardiomyocytes have not been studied previously. We applied single-nuclei whole genome sequencing, single nuclei RNA sequencing, and multiome ATAC + gene expression (from the same nuclei) techniques to nuclei isolated from 11 healthy hearts. Utilizing post-zygotic non-inherited somatic mutations occurring during development as "endogenous barcodes," to reconstruct lineage relationships of polyploid cardiomyocytes. Of 482 cardiomyocytes from multiple healthy donor hearts 75.7% can be sorted into several developmental clades marked by one or more somatic single-nucleotide variants (SNVs). At least ~10% of tetraploid cardiomyocytes contain cells from distinct clades, indicating fusion of lineally distinct cells, whereas 60% of higher-ploidy cardiomyocytes contain fused cells from distinct clades. Combined snRNA-seq and snATAC-seq revealed transcriptome and chromatin landscapes of polyploid cardiomyocytes distinct from diploid cardiomyocytes, and show some higher-ploidy cardiomyocytes with transcriptional signatures suggesting fusion between cardiomyocytes and endothelial and fibroblast cells. These observations provide the first evidence for cell and nuclear fusion of human cardiomyocytes, raising the possibility that cell fusion may contribute to developing or maintaining polyploid cardiomyocytes in the human heart.

2.
bioRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38077003

RESUMEN

Although mutations in dozens of genes have been implicated in familial forms of amyotrophic lateral sclerosis (fALS) and frontotemporal degeneration (fFTD), most cases of these conditions are sporadic (sALS and sFTD), with no family history, and their etiology remains obscure. We tested the hypothesis that somatic mosaic mutations, present in some but not all cells, might contribute in these cases, by performing ultra-deep, targeted sequencing of 88 genes associated with neurodegenerative diseases in postmortem brain and spinal cord samples from 404 individuals with sALS or sFTD and 144 controls. Known pathogenic germline mutations were found in 20.6% of ALS, and 26.5% of FTD cases. Predicted pathogenic somatic mutations in ALS/FTD genes were observed in 2.7% of sALS and sFTD cases that did not carry known pathogenic or novel germline mutations. Somatic mutations showed low variant allele fraction (typically <2%) and were often restricted to the region of initial discovery, preventing detection through genetic screening in peripheral tissues. Damaging somatic mutations were preferentially enriched in primary motor cortex of sALS and prefrontal cortex of sFTD, mirroring regions most severely affected in each disease. Somatic mutation analysis of bulk RNA-seq data from brain and spinal cord from an additional 143 sALS cases and 23 controls confirmed an overall enrichment of somatic mutations in sALS. Two adult sALS cases were identified bearing pathogenic somatic mutations in DYNC1H1 and LMNA, two genes associated with pediatric motor neuron degeneration. Our study suggests that somatic mutations in fALS/fFTD genes, and in genes associated with more severe diseases in the germline state, contribute to sALS and sFTD, and that mosaic mutations in a small fraction of cells in focal regions of the nervous system can ultimately result in widespread degeneration.

3.
medRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790480

RESUMEN

Little is known about the role of noncoding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of noncoding regions: Human Accelerated Regions (HARs), which show signatures of positive selection in humans; experimentally validated neural Vista Enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole genome analysis of >16,600 samples and >4900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in a VE near SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved noncoding regions in ASD risk and suggest potential mechanisms of how changes in regulatory regions can modulate social behavior.

4.
JAMA Neurol ; 80(9): 980-988, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486637

RESUMEN

Importance: Polymicrogyria is the most commonly diagnosed cortical malformation and is associated with neurodevelopmental sequelae including epilepsy, motor abnormalities, and cognitive deficits. Polymicrogyria frequently co-occurs with other brain malformations or as part of syndromic diseases. Past studies of polymicrogyria have defined heterogeneous genetic and nongenetic causes but have explained only a small fraction of cases. Objective: To survey germline genetic causes of polymicrogyria in a large cohort and to consider novel polymicrogyria gene associations. Design, Setting, and Participants: This genetic association study analyzed panel sequencing and exome sequencing of accrued DNA samples from a retrospective cohort of families with members with polymicrogyria. Samples were accrued over more than 20 years (1994 to 2020), and sequencing occurred in 2 stages: panel sequencing (June 2015 to January 2016) and whole-exome sequencing (September 2019 to March 2020). Individuals seen at multiple clinical sites for neurological complaints found to have polymicrogyria on neuroimaging, then referred to the research team by evaluating clinicians, were included in the study. Targeted next-generation sequencing and/or exome sequencing were performed on probands (and available parents and siblings) from 284 families with individuals who had isolated polymicrogyria or polymicrogyria as part of a clinical syndrome and no genetic diagnosis at time of referral from clinic, with sequencing from 275 families passing quality control. Main Outcomes and Measures: The number of families in whom genetic sequencing yielded a molecular diagnosis that explained the polymicrogyria in the family. Secondarily, the relative frequency of different genetic causes of polymicrogyria and whether specific genetic causes were associated with co-occurring head size changes were also analyzed. Results: In 32.7% (90 of 275) of polymicrogyria-affected families, genetic variants were identified that provided satisfactory molecular explanations. Known genes most frequently implicated by polymicrogyria-associated variants in this cohort were PIK3R2, TUBB2B, COL4A1, and SCN3A. Six candidate novel polymicrogyria genes were identified or confirmed: de novo missense variants in PANX1, QRICH1, and SCN2A and compound heterozygous variants in TMEM161B, KIF26A, and MAN2C1, each with consistent genotype-phenotype relationships in multiple families. Conclusions and Relevance: This study's findings reveal a higher than previously recognized rate of identifiable genetic causes, specifically of channelopathies, in individuals with polymicrogyria and support the utility of exome sequencing for families affected with polymicrogyria.


Asunto(s)
Polimicrogiria , Humanos , Polimicrogiria/diagnóstico por imagen , Polimicrogiria/genética , Secuenciación del Exoma , Estudios Retrospectivos , Mutación Missense , Hermanos , Proteínas del Tejido Nervioso/genética , Conexinas/genética
5.
Cancer Discov ; 12(1): 172-185, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34389641

RESUMEN

Although oncogenic mutations have been found in nondiseased, proliferative nonneural tissues, their prevalence in the human brain is unknown. Targeted sequencing of genes implicated in brain tumors in 418 samples derived from 110 individuals of varying ages, without tumor diagnoses, detected oncogenic somatic single-nucleotide variants (sSNV) in 5.4% of the brains, including IDH1 R132H. These mutations were largely present in subcortical white matter and enriched in glial cells and, surprisingly, were less common in older individuals. A depletion of high-allele frequency sSNVs representing macroscopic clones with age was replicated by analysis of bulk RNA sequencing data from 1,816 nondiseased brain samples ranging from fetal to old age. We also describe large clonal copy number variants and that sSNVs show mutational signatures resembling those found in gliomas, suggesting that mutational processes of the normal brain drive early glial oncogenesis. This study helps understand the origin and early evolution of brain tumors. SIGNIFICANCE: In the nondiseased brain, clonal oncogenic mutations are enriched in white matter and are less common in older individuals. We revealed early steps in acquiring oncogenic variants, which are essential to understanding brain tumor origins and building new mutational baselines for diagnostics.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Neoplasias Encefálicas/genética , Encéfalo/patología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Oncogenes , Polimorfismo de Nucleótido Simple , Adulto Joven
6.
Neuron ; 109(20): 3239-3251.e7, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34478631

RESUMEN

Human accelerated regions (HARs) are the fastest-evolving regions of the human genome, and many are hypothesized to function as regulatory elements that drive human-specific gene regulatory programs. We interrogate the in vitro enhancer activity and in vivo epigenetic landscape of more than 3,100 HARs during human neurodevelopment, demonstrating that many HARs appear to act as neurodevelopmental enhancers and that sequence divergence at HARs has largely augmented their neuronal enhancer activity. Furthermore, we demonstrate PPP1R17 to be a putative HAR-regulated gene that has undergone remarkable rewiring of its cell type and developmental expression patterns between non-primates and primates and between non-human primates and humans. Finally, we show that PPP1R17 slows neural progenitor cell cycle progression, paralleling the cell cycle length increase seen predominantly in primate and especially human neurodevelopment. Our findings establish HARs as key components in rewiring human-specific neurodevelopmental gene regulatory programs and provide an integrated resource to study enhancer activity of specific HARs.


Asunto(s)
Encéfalo/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Animales , Evolución Biológica , Epigenómica , Evolución Molecular , Hurones , Humanos , Macaca , Ratones , Pan troglodytes
7.
Proc Natl Acad Sci U S A ; 117(25): 13886-13895, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32522880

RESUMEN

Elucidating the lineage relationships among different cell types is key to understanding human brain development. Here we developed parallel RNA and DNA analysis after deep sequencing (PRDD-seq), which combines RNA analysis of neuronal cell types with analysis of nested spontaneous DNA somatic mutations as cell lineage markers, identified from joint analysis of single-cell and bulk DNA sequencing by single-cell MosaicHunter (scMH). PRDD-seq enables simultaneous reconstruction of neuronal cell type, cell lineage, and sequential neuronal formation ("birthdate") in postmortem human cerebral cortex. Analysis of two human brains showed remarkable quantitative details that relate mutation mosaic frequency to clonal patterns, confirming an early divergence of precursors for excitatory and inhibitory neurons, and an "inside-out" layer formation of excitatory neurons as seen in other species. In addition our analysis allows an estimate of excitatory neuron-restricted precursors (about 10) that generate the excitatory neurons within a cortical column. Inhibitory neurons showed complex, subtype-specific patterns of neurogenesis, including some patterns of development conserved relative to mouse, but also some aspects of primate cortical interneuron development not seen in mouse. PRDD-seq can be broadly applied to characterize cell identity and lineage from diverse archival samples with single-cell resolution and in potentially any developmental or disease condition.


Asunto(s)
Linaje de la Célula , Corteza Cerebral/citología , Neurogénesis , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Acumulación de Mutaciones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Análisis de Secuencia de ADN , Análisis de la Célula Individual
8.
Neuron ; 106(2): 246-255.e6, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32097629

RESUMEN

Genes mutated in human neuronal migration disorders encode tubulin proteins and a variety of tubulin-binding and -regulating proteins, but it is very poorly understood how these proteins function together to coordinate migration. Additionally, the way in which regional differences in neocortical migration are controlled is completely unknown. Here we describe a new syndrome with remarkably region-specific effects on neuronal migration in the posterior cortex, reflecting de novo variants in CEP85L. We show that CEP85L is required cell autonomously in vivo and in vitro for migration, that it localizes to the maternal centriole, and that it forms a complex with many other proteins required for migration, including CDK5, LIS1, NDE1, KIF2A, and DYNC1H1. Loss of CEP85L disrupts CDK5 localization and activation, leading to centrosome disorganization and disrupted microtubule cytoskeleton organization. Together, our findings suggest that CEP85L highlights a complex that controls CDK5 activity to promote neuronal migration.


Asunto(s)
Movimiento Celular , Quinasa 5 Dependiente de la Ciclina/genética , Proteínas del Citoesqueleto/genética , Lisencefalia/genética , Lisencefalia/patología , Neocórtex/patología , Neuronas/patología , Proteínas de Fusión Oncogénica/genética , Centriolos/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Microtúbulos/genética , Microtúbulos/ultraestructura , Proteínas del Tejido Nervioso/fisiología , Adulto Joven
9.
Sci Rep ; 9(1): 6024, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988517

RESUMEN

MINT2/APBA2 is a synaptic adaptor protein involved in excitatory synaptic transmission. Several nonsynonymous coding variants in MINT2 have been identified in autism spectrum disorders (ASDs); however, these rare variants have not been examined functionally and the pathogenic mechanisms are unknown. Here, we examined the synaptic effects of rat Mint2 N723S mutation (equivalent to autism-linked human MINT2 N722S mutation) which targets a conserved asparagine residue in the second PDZ domain of Mint2 that binds to neurexin-1α (Nrxn1α), a presynaptic cell-adhesion protein implicated in ASDs. We show the N723S mutation impairs Nrxn1α stabilization and trafficking to the membrane while binding to Nrxn1α remains unaffected. Using time-lapse imaging in primary mouse neurons, we found that the N723S mutant had more immobile puncta at neuronal processes compared to Mint2 wild type. We therefore, reasoned that the N723S mutant may alter the co-transport of Nrxn1α at axonal processes to presynaptic terminals. Indeed, we found the N723S mutation affected Nrxn1α localization at presynaptic terminals which correlated with a decrease in Nrxn-mediated synaptogenesis and miniature event frequency in excitatory synapses. Together, our data reveal Mint2 N723S leads to neuronal dysfunction, in part due to alterations in Nrxn1α surface trafficking and synaptic function of Mint2.


Asunto(s)
Trastorno Autístico/genética , Cadherinas/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Animales , Trastorno Autístico/metabolismo , Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Mutación Puntual , Transporte de Proteínas , Transmisión Sináptica
10.
Am J Med Genet B Neuropsychiatr Genet ; 177(8): 736-745, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30421579

RESUMEN

Protein homeostasis is tightly regulated by the ubiquitin proteasome pathway. Disruption of this pathway gives rise to a host of neurological disorders. Through whole exome sequencing (WES) in families with neurodevelopmental disorders, we identified mutations in PSMD12, a core component of the proteasome, underlying a neurodevelopmental disorder with intellectual disability (ID) and features of autism spectrum disorder (ASD). We performed WES on six affected siblings from a multiplex family with ID and autistic features, the affected father, and two unaffected mothers, and a trio from a simplex family with one affected child with ID and periventricular nodular heterotopia. We identified an inherited heterozygous nonsense mutation in PSMD12 (NM_002816: c.367C>T: p.R123X) in the multiplex family and a de novo nonsense mutation in the same gene (NM_002816: c.601C>T: p.R201X) in the simplex family. PSMD12 encodes a non-ATPase regulatory subunit of the 26S proteasome. We confirm the association of PSMD12 with ID, present the first cases of inherited PSMD12 mutation, and demonstrate the heterogeneity of phenotypes associated with PSMD12 mutations.


Asunto(s)
Discapacidad Intelectual/genética , Complejo de la Endopetidasa Proteasomal/genética , Adolescente , Adulto , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Niño , Preescolar , Familia , Femenino , Predisposición Genética a la Enfermedad , Haploinsuficiencia/genética , Humanos , Masculino , Mutación , Trastornos del Neurodesarrollo/genética , Linaje , Complejo de la Endopetidasa Proteasomal/metabolismo , Hermanos , Secuenciación del Exoma
11.
Neuron ; 99(5): 905-913.e7, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30146301

RESUMEN

Channelopathies are disorders caused by abnormal ion channel function in differentiated excitable tissues. We discovered a unique neurodevelopmental channelopathy resulting from pathogenic variants in SCN3A, a gene encoding the voltage-gated sodium channel NaV1.3. Pathogenic NaV1.3 channels showed altered biophysical properties including increased persistent current. Remarkably, affected individuals showed disrupted folding (polymicrogyria) of the perisylvian cortex of the brain but did not typically exhibit epilepsy; they presented with prominent speech and oral motor dysfunction, implicating SCN3A in prenatal development of human cortical language areas. The development of this disorder parallels SCN3A expression, which we observed to be highest early in fetal cortical development in progenitor cells of the outer subventricular zone and cortical plate neurons and decreased postnatally, when SCN1A (NaV1.1) expression increased. Disrupted cerebral cortical folding and neuronal migration were recapitulated in ferrets expressing the mutant channel, underscoring the unexpected role of SCN3A in progenitor cells and migrating neurons.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Desarrollo del Lenguaje , Canal de Sodio Activado por Voltaje NAV1.3/genética , Canales de Sodio/genética , Adolescente , Adulto , Animales , Movimiento Celular/fisiología , Células Cultivadas , Corteza Cerebral/patología , Niño , Preescolar , Femenino , Hurones , Células HEK293 , Humanos , Lactante , Masculino , Megalencefalia/diagnóstico por imagen , Megalencefalia/genética , Megalencefalia/patología , Persona de Mediana Edad , Linaje , Polimicrogiria/diagnóstico por imagen , Polimicrogiria/genética , Polimicrogiria/patología
12.
Mol Cancer Res ; 14(12): 1204-1216, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27655129

RESUMEN

MEK inhibitors have limited efficacy in treating RAS-RAF-MEK pathway-dependent cancers due to feedback pathway compensation and dose-limiting toxicities. Combining MEK inhibitors with other targeted agents may enhance efficacy. Here, codependencies of MEK, TAK1, and KRAS in colon cancer were investigated. Combined inhibition of MEK and TAK1 potentiates apoptosis in KRAS-dependent cells. Pharmacologic studies and cell-cycle analyses on a large panel of colon cancer cell lines demonstrate that MEK/TAK1 inhibition induces cell death, as assessed by sub-G1 accumulation, in a distinct subset of cell lines. Furthermore, TAK1 inhibition causes G2-M cell-cycle blockade and polyploidy in many of the cell lines. MEK plus TAK1 inhibition causes reduced G2-M/polyploid cell numbers and additive cytotoxic effects in KRAS/TAK1-dependent cell lines as well as a subset of BRAF-mutant cells. Mechanistically, sensitivity to MEK/TAK1 inhibition can be conferred by KRAS and BMP receptor activation, which promote expression of NF-κB-dependent proinflammatory cytokines, driving tumor cell survival and proliferation. MEK/TAK1 inhibition causes reduced mTOR, Wnt, and NF-κB signaling in TAK1/MEK-dependent cell lines concomitant with apoptosis. A Wnt/NF-κB transcriptional signature was derived that stratifies primary tumors into three major subtypes: Wnt-high/NF-κB-low, Wnt-low/NF-κB-high and Wnt-high/NF-κB-high, designated W, N, and WN, respectively. These subtypes have distinct characteristics, including enrichment for BRAF mutations with serrated carcinoma histology in the N subtype. Both N and WN subtypes bear molecular hallmarks of MEK and TAK1 dependency seen in cell lines. Therefore, N and WN subtype signatures could be utilized to identify tumors that are most sensitive to anti-MEK/TAK1 therapeutics. IMPLICATIONS: This study describes a potential therapeutic strategy for a subset of colon cancers that are dependent on oncogenic KRAS signaling pathways, which are currently difficult to block with selective agents. Mol Cancer Res; 14(12); 1204-16. ©2016 AACR.


Asunto(s)
Neoplasias del Colon/genética , Citocinas/genética , Quinasas Quinasa Quinasa PAM/economía , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Apoptosis , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/inmunología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...