Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38234742

RESUMEN

Deep-brain stimulation (DBS) with implanted electrodes revolutionized treatment of movement disorders and empowered neuroscience studies. Identifying less invasive alternatives to DBS may further extend its clinical and research applications. Nanomaterial-mediated transduction of magnetic fields into electric potentials offers an alternative to invasive DBS. Here, we synthesize magnetoelectric nanodiscs (MENDs) with a core-double shell Fe3O4-CoFe2O4-BaTiO3 architecture with efficient magnetoelectric coupling. We find robust responses to magnetic field stimulation in neurons decorated with MENDs at a density of 1 µg/mm2 despite individual-particle potentials below the neuronal excitation threshold. We propose a model for repetitive subthreshold depolarization, which combined with cable theory, corroborates our findings in vitro and informs magnetoelectric stimulation in vivo. MENDs injected into the ventral tegmental area of genetically intact mice at concentrations of 1 mg/mL enable remote control of reward behavior, setting the stage for mechanistic optimization of magnetoelectric neuromodulation and inspiring its future applications in fundamental and translational neuroscience.

2.
Nat Commun ; 12(1): 1562, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692363

RESUMEN

Among topological solitons, magnetic skyrmions are two-dimensional particle-like objects with a continuous winding of the magnetization, and magnetic Hopfions are three-dimensional objects that can be formed from a closed loop of twisted skyrmion strings. Theoretical models suggest that magnetic Hopfions can be stabilized in frustrated or chiral magnetic systems, and target skymions can be transformed into Hopfions by adapting their perpendicular magnetic anisotropy, but their experimental verification has been elusive so far. Here, we present an experimental study of magnetic Hopfions that are created in Ir/Co/Pt multilayers shaped into nanoscale disks, known to host target skyrmions. To characterize three-dimensional spin textures that distinguish Hopfions from target skyrmions magnetic images are recorded with surface-sensitive X-ray photoemission electron microscopy and bulk-sensitive soft X-ray transmission microscopy using element-specific X-ray magnetic circular dichroism effects as magnetic contrast. These results could stimulate further investigations of Hopfions and their potential application in three-dimensional spintronics devices.

3.
Science ; 365(6450): 264-267, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31320536

RESUMEN

Solid ferromagnetic materials are rigid in shape and cannot be reconfigured. Ferrofluids, although reconfigurable, are paramagnetic at room temperature and lose their magnetization when the applied magnetic field is removed. Here, we show a reversible paramagnetic-to-ferromagnetic transformation of ferrofluid droplets by the jamming of a monolayer of magnetic nanoparticles assembled at the water-oil interface. These ferromagnetic liquid droplets exhibit a finite coercivity and remanent magnetization. They can be easily reconfigured into different shapes while preserving the magnetic properties of solid ferromagnets with classic north-south dipole interactions. Their translational and rotational motions can be actuated remotely and precisely by an external magnetic field, inspiring studies on active matter, energy-dissipative assemblies, and programmable liquid constructs.

4.
Sci Adv ; 5(2): eaav6380, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30783629

RESUMEN

Magnetic monopoles, proposed as elementary particles that act as isolated magnetic south and north poles, have long attracted research interest as magnetic analogs to electric charge. In solid-state physics, a classical analog to these elusive particles has emerged as topological excitations within pyrochlore spin ice systems. We present the first real-time imaging of emergent magnetic monopole motion in a macroscopically degenerate artificial spin ice system consisting of thermally activated Ising-type nanomagnets lithographically arranged onto a pre-etched silicon substrate. A real-space characterization of emergent magnetic monopoles within the framework of Debye-Hückel theory is performed, providing visual evidence that these topological defects act like a plasma of Coulomb-type magnetic charges. In contrast to vertex defects in a purely two-dimensional artificial square ice, magnetic monopoles are free to evolve within a divergence-free vacuum, a magnetic Coulomb phase, for which features in the form of pinch-point singularities in magnetic structure factors are observed.

5.
Nano Lett ; 18(12): 7428-7434, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30248262

RESUMEN

We use nano disk arrays with square and honeycomb symmetry to investigate magnetic phases and spin correlations of XY dipolar systems at the micro scale. Utilizing magnetization sensitive X-ray photoemission electron microscopy, we probe magnetic ground states and the "order-by-disorder" phenomenon predicted 30 years ago. We observe the antiferromagnetic striped ground state in square lattices, and 6-fold symmetric structures, including trigonal vortex lattices and disordered floating vortices, in the honeycomb lattice. The spin frustration in the honeycomb lattice causes a phase transition from a long-range ordered locked phase over a floating phase with quasi long-range order and indications of a Berezinskii-Thouless-Kosterlitz-like character, to the thermally excited paramagnetic state. Absent spatial correlation and quasi periodic switching of isolated vortices in the quasi long-range ordered phase suggest a degeneracy of the vortex circulation.

6.
Adv Mater ; 30(27): e1800199, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29797433

RESUMEN

Inversion symmetry breaking has become a vital research area in modern magnetism with phenomena including the Rashba effect, spin Hall effect, and the Dzyaloshinskii-Moriya interaction (DMI)-a vector spin exchange. The latter one may stabilize chiral spin textures with topologically nontrivial properties, such as Skyrmions. So far, chiral spin textures have mainly been studied in helimagnets and thin ferromagnets with heavy-element capping. Here, the concept of chirality driven by interfacial DMI is generalized to complex multicomponent systems and demonstrated on the example of chiral ferrimagnetism in amorphous GdCo films. Utilizing Lorentz microscopy and X-ray magnetic circular dichroism spectroscopy, and tailoring thickness, capping, and rare-earth composition, reveal that 2 nm thick GdCo films preserve ferrimagnetism and stabilize chiral domain walls. The type of chiral domain walls depends on the rare-earth composition/saturation magnetization, enabling a possible temperature control of the intrinsic properties of ferrimagnetic domain walls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...