Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Onco Targets Ther ; 15: 1331-1346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388156

RESUMEN

Ovarian cancer remains the most lethal gynecological malignancy worldwide due to lack of effective screening, vague early symptoms, poor description of biomarkers, and absence of effective treatment regimes. Epithelial ovarian carcinoma (EOC) is categorized into five distinct disease subtypes which collectively account for ~90% of ovarian carcinomas. Most women present at advanced stages contributing to a poor overall 5-year survival rate. Standard treatment for EOC is cytoreductive surgery and platinum-based chemotherapy; however, most patients suffer from recurrence and platinum-resistant disease, which highlights an urgent need for targeted therapy. The high frequency of molecular alterations affecting gain-of-function signaling through the RAS mitogen-activated protein kinase (MAPK) pathway in EOC has prompted pre-clinical and clinical efforts toward research into the effectiveness of MAPK pathway inhibition as a second-line treatment. The RAS/MAPK pathway is a highly conserved signal transduction cascade, often disrupted in cancer, that regulates tumorigenic phenotypes including cellular proliferation, survival, migration, apoptosis, and differentiation. Herein, the role of the MAPK pathway in EOC with emphasis on targetability of the pathway is described. Pre-clinical and clinical efforts to target MAPK signaling in EOC have identified several MAPK pathway inhibitors that offer efficacious potential for monotherapy and in combination with other compounds. Thus, inhibition of the RAS/MAPK pathway is emerging as a tractable strategy for treatment of ovarian cancer that may permit development of personalized therapy and improved prognosis for women challenged by this disease.

2.
J Clin Invest ; 131(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33561012

RESUMEN

Ovarian cancer (OC) is the most deadly gynecological malignancy, with unmet clinical need for new therapeutic approaches. The relaxin peptide is a pleiotropic hormone with reproductive functions in the ovary. Relaxin induces cell growth in several types of cancer, but the role of relaxin in OC is poorly understood. Here, using cell lines and xenograft models, we demonstrate that relaxin and its associated GPCR RXFP1 form an autocrine signaling loop essential for OC in vivo tumorigenesis, cell proliferation, and viability. We determined that relaxin signaling activates expression of prooncogenic pathways, including RHO, MAPK, Wnt, and Notch. We found that relaxin is detectable in patient-derived OC tumors, ascites, and serum. Further, inflammatory cytokines IL-6 and TNF-α activated transcription of relaxin via recruitment of STAT3 and NF-κB to the proximal promoter, initiating an autocrine feedback loop that potentiated expression. Inhibition of RXFP1 or relaxin increased cisplatin sensitivity of OC cell lines and abrogated in vivo tumor formation. Finally, we demonstrate that a relaxin-neutralizing antibody reduced OC cell viability and sensitized cells to cisplatin. Collectively, these data identify the relaxin/RXFP1 autocrine loop as a therapeutic vulnerability in OC.


Asunto(s)
Comunicación Autocrina , Carcinogénesis/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/metabolismo , Relaxina/metabolismo , Vía de Señalización Wnt , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Neoplasias Ováricas/patología , Neoplasias Ováricas/terapia
3.
Nat Commun ; 11(1): 4673, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938917

RESUMEN

RAS-MAPK signaling mediates processes critical to normal development including cell proliferation, survival, and differentiation. Germline mutation of RAS-MAPK genes lead to the Noonan-spectrum of syndromes. Here, we present a patient affected by a 6p-interstitial microdeletion with unknown underlying molecular etiology. Examination of 6p-interstitial microdeletion cases reveals shared clinical features consistent with Noonan-spectrum disorders including short stature, facial dysmorphia and cardiovascular abnormalities. We find the RAS-responsive element binding protein-1 (RREB1) is the common deleted gene in multiple 6p-interstitial microdeletion cases. Rreb1 hemizygous mice display orbital hypertelorism and cardiac hypertrophy phenocopying the human syndrome. Rreb1 haploinsufficiency leads to sensitization of MAPK signaling. Rreb1 recruits Sin3a and Kdm1a to control H3K4 methylation at MAPK pathway gene promoters. Haploinsufficiency of SIN3A and mutations in KDM1A cause syndromes similar to RREB1 haploinsufficiency suggesting genetic perturbation of the RREB1-SIN3A-KDM1A complex represents a new category of RASopathy-like syndromes arising through epigenetic reprogramming of MAPK pathway genes.


Asunto(s)
Proteínas de Unión al ADN/genética , Haploinsuficiencia , Sistema de Señalización de MAP Quinasas/genética , Síndrome de Noonan/etiología , Factores de Transcripción/genética , Proteínas ras/metabolismo , Anomalías Múltiples/genética , Animales , Deleción Cromosómica , Cromosomas Humanos Par 6 , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Masculino , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Factores de Transcripción/metabolismo , Proteínas ras/genética
4.
Small GTPases ; 10(6): 441-448, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-28656876

RESUMEN

Oncogenic KRAS engages multiple effector pathways including the MAPK cascade to promote proliferation and survival of pancreatic cancer cells. KRAS-transformed cancer cells exhibit oncogene addiction to sustained activity of RAS for maintenance of malignant phenotypes. Previously, we have shown an essential role for the RHO guanine exchange factor ARHGEF2 for growth and survival of RAS-transformed pancreatic tumors. Here, we have determined that pancreatic cancer cells demonstrating KRAS addiction are significantly dependent on expression of ARHGEF2. Furthermore, enforced expression of ARHGEF2 desensitizes cells to pharmacological MEK inhibition and initiates a positive feedback loop which activates ERK phosphorylation and the downstream ARHGEF2 promoter. Therefore, targeting ARHGEF2 expression may increase the efficacy of MAPK inhibitors for treatment of RAS-dependent pancreatic cancers.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
6.
J Vis Exp ; (136)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29985373

RESUMEN

MicroRNA (miRNA) is small non-coding RNA which inhibits post-transcriptional messenger RNA (mRNA) expression. Human diseases, such as cancer and cardiovascular disease, have been shown to activate tissue and/or cell-specific miRNA expression associated with disease progression. The inhibition of miRNA expression offers the potential for a therapeutic intervention. However, traditional approaches to inhibit miRNAs, employing antagomir oligonucleotides, affect specific miRNA functions upon global delivery. Herein, we present a protocol for the in vivo cardio-specific inhibition of the miR-181 family in a rat model. A miRNA-sponge construct is designed to include 10 repeated anti-miR-181 binding sequences. The cardio-specific α-MHC promoter is cloned into the pEGFP backbone to drive the cardio-specific miR-181 miRNA-sponge expression. To create a stable cell line expressing the miR-181-sponge, myoblast H9c2 cells are transfected with the α-MHC-EGFP-miR-181-sponge construct and sorted by fluorescence-activated cell sorting (FACs) into GFP positive H9c2 cells which are cultured with neomycin (G418). Following stable growth in neomycin, monoclonal cell populations are established by additional FACs and single cell cloning. The resulting myoblast H9c2-miR-181-sponge-GFP cells exhibit a loss of function of miR-181 family members as assessed through the increased expression of miR-181 target proteins and compared to H9c2 cells expressing a scramble non-functional sponge. In addition, we develop a nanovector for the systemic delivery of the miR-181-sponge construct by complexing positively charged liposomal nanoparticles and negatively charged miR-181-sponge plasmids. In vivo imaging of GFP reveals that multiple tail vein injections of a nanovector over a three-week period are able to promote a significant expression of the miR-181-sponge in a cardio-specific manner. Importantly, a loss of miR-181 function is observed in the heart tissue but not in the kidney or the liver. The miRNA-sponge is a powerful method to inhibit tissue-specific miRNA expression. Driving the miRNA-sponge expression from a tissue-specific promoter provides specificity for the miRNA inhibition, which can be confined to a targeted organ or tissue. Furthermore, combining nanovector and miRNA-sponge technologies permits an effective delivery and tissue-specific miRNA inhibition in vivo.


Asunto(s)
Corazón/fisiología , MicroARNs/genética , Nanopartículas/metabolismo , Animales , Humanos , Ratas , Transfección
7.
Methods ; 125: 16-24, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28669867

RESUMEN

Here we describe the synthesis and use of a directed hydroxyl radical probe, tethered to a pre-mRNA substrate, to map the structure of this substrate during the spliceosome assembly process. These studies indicate an early organization and proximation of conserved pre-mRNA sequences during spliceosome assembly. This methodology may be adapted to the synthesis of a wide variety of modified RNAs for use as probes of RNA structure and RNA-protein interaction.


Asunto(s)
Radical Hidroxilo/química , Técnicas de Sonda Molecular , Sondas Moleculares/síntesis química , Precursores del ARN/química , Empalmosomas/metabolismo , Cristalografía por Rayos X/métodos , ARN Polimerasas Dirigidas por ADN/metabolismo , Radical Hidroxilo/metabolismo , Oligonucleótidos/metabolismo , Precursores del ARN/metabolismo , Empalme del ARN , Empalmosomas/química , Proteínas Virales/metabolismo
8.
J Clin Invest ; 127(4): 1303-1315, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28287403

RESUMEN

Bone undergoes continuous remodeling due to balanced bone formation and resorption mediated by osteoblasts and osteoclasts, respectively. Osteoclasts arise from the macrophage lineage, and their differentiation is dependent on RANKL, a member of the TNF family of cytokines. Here, we have provided evidence that RANKL controls the expression of 3BP2, an adapter protein that is required for activation of SRC tyrosine kinase and simultaneously coordinates the attenuation of ß-catenin, both of which are required to execute the osteoclast developmental program. We found that RANKL represses the transcription of the E3 ubiquitin ligase RNF146 through an NF-κB-related inhibitory element in the RNF146 promoter. RANKL-mediated suppression of RNF146 results in the stabilization of its substrates, 3BP2 and AXIN1, which consequently triggers the activation of SRC and attenuates the expression of ß-catenin, respectively. Depletion of RNF146 caused hypersensitivity to LPS-induced TNF-α production in vivo. RNF146 thus acts as an inhibitory switch to control osteoclastogenesis and cytokine production and may be a control point underlying the pathogenesis of chronic inflammatory diseases.


Asunto(s)
Osteoclastos/metabolismo , Ligando RANK/metabolismo , Elementos de Respuesta , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína Axina/genética , Proteína Axina/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Osteoclastos/citología , Ligando RANK/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/genética , beta Catenina/genética , beta Catenina/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
9.
J Am Heart Assoc ; 6(3)2017 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-28242633

RESUMEN

BACKGROUND: MicroRNA (miRNA) is a type of noncoding RNA that can repress the expression of target genes through posttranscriptional regulation. In addition to numerous physiologic roles for miRNAs, they play an important role in pathophysiologic processes affecting cardiovascular health. Previously, we reported that nuclear encoded microRNA (miR-181c) is present in heart mitochondria, and importantly, its overexpression affects mitochondrial function by regulating mitochondrial gene expression. METHODS AND RESULTS: To investigate further how the miR-181 family affects the heart, we suppressed miR-181 using a miR-181-sponge containing 10 repeated complementary miR-181 "seed" sequences and generated a set of H9c2 cells, a cell line derived from rat myoblast, by stably expressing either a scrambled or miR-181-sponge sequence. Sponge-H9c2 cells showed a decrease in reactive oxygen species production and reduced basal mitochondrial respiration and protection against doxorubicin-induced oxidative stress. We also found that miR-181a/b targets phosphatase and tensin homolog (PTEN), and the sponge-expressing stable cells had increased PTEN activity and decreased PI3K signaling. In addition, we have used miR-181a/b-/- and miR-181c/d-/- knockout mice and subjected them to ischemia-reperfusion injury. Our results suggest divergent effects of different miR-181 family members: miR-181a/b targets PTEN in the cytosol, resulting in an increase in infarct size in miR-181a/b-/- mice due to increased PTEN signaling, whereas miR-181c targets mt-COX1 in the mitochondria, resulting in decreased infarct size in miR-181c/d-/- mice. CONCLUSIONS: The miR-181 family alters the myocardial response to oxidative stress, notably with detrimental effects by targeting mt-COX1 (miR-181c) or with protection by targeting PTEN (miR-181a/b).


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Animales , Ciclooxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mioblastos/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Fosfohidrolasa PTEN/metabolismo , Ratas
10.
Oncotarget ; 8(3): 4484-4500, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27835861

RESUMEN

Activating mutations of KRAS are nearly ubiquitous in pancreatic adenocarcinomas occurring in greater than 90% of cases. Cellular transformation by oncogenic RAS requires the RHO guanine exchange factor ARHGEF2 (also known as GEF-H1) for tumor growth and survival. Here, we find oncogenic KRAS activates ARHGEF2 through a minimal RAS responsive promoter. We have determined the endogenous ARHGEF2 promoter is positively regulated by the transcription factors ELK1, ETS1, SP1 and SP3 and negatively regulated by the RAS responsive element binding protein (RREB1). We find that the panel of ARHGEF2-regulating transcription factors modulates RAS transformed phenotypes including cellular viability, anchorage-independent growth and invasion-migration of pancreatic cancer cells. RREB1 knockdown activates the amplitude and duration of RHOA via increased ARHGEF2 expression. By relieving the negative regulation of RREB1 on the ARHGEF2 promoter, we determined that ETS1 and SP3 are essential for the normal expression of ARHGEF2 and contribute to the migratory behavior of pancreatic cancer cells. Furthermore, enforced expression of ARHGEF2 rescues loss of SP3 driven invasion-migration and anchorage-independent growth defective phenotypes through restored activation of RHOA. Collectively, our results identify a transcription factor program required for RAS transformation and provide mechanistic insight into the highly metastatic behavior of pancreatic cancer.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Activación Transcripcional , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Transformación Celular Neoplásica/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Neoplasias Pancreáticas/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Factor de Transcripción Sp3/metabolismo , Factores de Transcripción/metabolismo
11.
J Clin Invest ; 126(12): 4482-4496, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27797343

RESUMEN

Cellular identity in metazoan organisms is frequently established through lineage-specifying transcription factors, which control their own expression through transcriptional positive feedback, while antagonizing the developmental networks of competing lineages. Here, we have uncovered a distinct positive feedback loop that arises from the reciprocal stabilization of the tyrosine kinase ABL and the transcriptional coactivator TAZ. Moreover, we determined that this loop is required for osteoblast differentiation and embryonic skeletal formation. ABL potentiated the assembly and activation of the RUNX2-TAZ master transcription factor complex that is required for osteoblastogenesis, while antagonizing PPARγ-mediated adipogenesis. ABL also enhanced TAZ nuclear localization and the formation of the TAZ-TEAD complex that is required for osteoblast expansion. Last, we have provided genetic data showing that regulation of the ABL-TAZ amplification loop lies downstream of the adaptor protein 3BP2, which is mutated in the craniofacial dysmorphia syndrome cherubism. Our study demonstrates an interplay between ABL and TAZ that controls the mesenchymal maturation program toward the osteoblast lineage and is mechanistically distinct from the established model of lineage-specific maturation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Núcleo Celular/genética , Querubismo/genética , Querubismo/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo , Proteínas Proto-Oncogénicas c-abl/genética , Transactivadores
12.
Mol Cancer Res ; 14(3): 267-77, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26747707

RESUMEN

UNLABELLED: Activating KRAS mutations are nearly ubiquitous in pancreatic cancer occurring in more than 95% of clinical cases. miRNAs are small noncoding RNAs that regulate gene expression by binding sequences within the 3'UTRs of target mRNAs. An integral role for miRNAs in cancer pathogenesis is well established; however, the role of miRNAs in KRAS-mediated tumorigenesis is poorly characterized. Here it is demonstrated that expression of miR-31 is coupled to the expression of oncogenic KRAS and activity of the MAPK pathway. miR-31 is highly expressed in patient-derived xenografts and a panel of pancreatic and colorectal cancer cells harboring activating KRAS mutations. The miR-31 host gene is a large noncoding RNA that correlates with miR-31 expression and enabled identification of the putative miR-31 promoter. Using luciferase reporters, a minimal RAS-responsive miR-31 promoter was found to drive robust luciferase activity dependent on expression of mutant KRAS and the transcription factor ELK1. Furthermore, ELK1 interacts directly with the endogenous miR-31 promoter in a MAPK-dependent manner. Expression of enforced miR-31 significantly enhanced invasion and migration of multiple pancreatic cancer cells resulting from the activation of RhoA through regulation of the miR-31 target gene RASA1. Importantly, acute knockdown of RASA1 phenocopied enforced miR-31 expression on the migratory behavior of pancreatic cancer cells through increased RhoA activation. IMPLICATIONS: Oncogenic KRAS can activate Rho through the miR-31-mediated regulation of RASA1 indicating miR-31 acts as a KRAS effector to modulate invasion and migration in pancreatic cancer.


Asunto(s)
Neoplasias Colorrectales/genética , MicroARNs/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína Activadora de GTPasa p120/genética , Línea Celular Tumoral , Movimiento Celular , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Mutación , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo , Proteína Activadora de GTPasa p120/metabolismo
13.
Nucleic Acids Res ; 42(12): 7528-38, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24875473

RESUMEN

miR-143 and miR-145 are co-expressed microRNAs (miRNAs) that have been extensively studied as potential tumor suppressors. These miRNAs are highly expressed in the colon and are consistently reported as being downregulated in colorectal and other cancers. Through regulation of multiple targets, they elicit potent effects on cancer cell growth and tumorigenesis. Importantly, a recent discovery demonstrates that miR-143 and miR-145 are not expressed in colonic epithelial cells; rather, these two miRNAs are highly expressed in mesenchymal cells such as fibroblasts and smooth muscle cells. The expression patterns of miR-143 and miR-145 and other miRNAs were initially determined from tissue level data without consideration that multiple different cell types, each with their own unique miRNA expression patterns, make up each tissue. Herein, we discuss the early reports on the identification of dysregulated miR-143 and miR-145 expression in colorectal cancer and how lack of consideration of cellular composition of normal tissue led to the misconception that these miRNAs are downregulated in cancer. We evaluate mechanistic data from miR-143/145 studies in context of their cell type-restricted expression pattern and the potential of these miRNAs to be considered tumor suppressors. Further, we examine other examples of miRNAs being investigated in inappropriate cell types modulating pathways in a non-biological fashion. Our review highlights the importance of determining the cellular expression pattern of each miRNA, so that downstream studies are conducted in the appropriate cell type.


Asunto(s)
MicroARNs/metabolismo , Colon/citología , Colon/metabolismo , Células Epiteliales/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Neoplasias Glandulares y Epiteliales/terapia
14.
Cancer Cell ; 25(2): 181-95, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24525234

RESUMEN

Cellular transformation by oncogenic RAS engages the MAPK pathway under strict regulation by the scaffold protein KSR-1. Here, we report that the guanine nucleotide exchange factor GEF-H1 plays a critical role in a positive feedback loop for the RAS/MAPK pathway independent of its RhoGEF activity. GEF-H1 acts as an adaptor protein linking the PP2A B' subunits to KSR-1, thereby mediating the dephosphorylation of KSR-1 S392 and activation of MAPK signaling. GEF-H1 is important for the growth and survival of HRAS(V12)-transformed cells and pancreatic tumor xenografts. GEF-H1 expression is induced by oncogenic RAS and is correlated with pancreatic neoplastic progression. Our results, therefore, identify GEF-H1 as an amplifier of MAPK signaling and provide mechanistic insight into the progression of RAS mutant tumors.


Asunto(s)
Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/patología , Proteínas Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas ras/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Técnicas para Inmunoenzimas , Ratones , Células 3T3 NIH , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilación , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Transducción de Señal , Células Tumorales Cultivadas , Proteínas ras/genética
15.
Circ Res ; 110(12): 1596-603, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22518031

RESUMEN

RATIONALE: Mitochondria are semiautonomous cellular organelles with their own genome, which not only supply energy but also participate in cell death pathways. MicroRNAs (miRNAs) are usually 19 to 25 nt long, noncoding RNAs, involved in posttranscriptional gene regulation by binding to the 3'-untranslated regions of target mRNA, which impact on diverse cellular processes. OBJECTIVE: To determine if nuclear miRNAs translocate into the mitochondria and regulate mitochondrial function with possible pathophysiological implications in cardiac myocytes. METHODS AND RESULTS: We find that miR-181c is encoded in the nucleus, assembled in the cytoplasm, and finally translocated into the mitochondria of cardiac myocytes. Immunoprecipitation of Argonaute 2 from the mitochondrial fraction indicates binding of cytochrome c oxidase subunit 1 (mt-COX1) mRNA from the mitochondrial genome with miR-181c. Also, a luciferase reporter construct shows that mi-181c binds to the 3'UTR of mt-COX1. To study whether miR-181c regulates mt-COX1, we overexpressed precursor miR-181c (or a scrambled sequence) in primary cultures of neonatal rat ventricular myocytes. Overexpression of miR-181c did not change mt-COX1 mRNA but significantly decreased mt-COX1 protein, suggesting that miR-181c is primarily a translational regulator of mt-COX1. In addition to altering mt-COX1, overexpression of miR-181c results in increased mt-COX2 mRNA and protein content, with an increase in both mitochondrial respiration and reactive oxygen species generation in neonatal rat ventricular myocytes. Thus, our data show for the first time that miR-181c can enter and target the mitochondrial genome, ultimately causing electron transport chain complex IV remodeling and mitochondrial dysfunction. CONCLUSIONS: Nuclear miR-181c translocates into the mitochondria and regulates mitochondrial genome expression. This unique observation may open a new dimension to our understanding of mitochondrial dynamics and the role of miRNA in mitochondrial dysfunction.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , Genoma Mitocondrial/genética , MicroARNs/fisiología , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/fisiología , Animales , Células Cultivadas , Masculino , Ratas , Ratas Sprague-Dawley
16.
BMC Med Genomics ; 4: 78, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22047531

RESUMEN

BACKGROUND: MicroRNAs are ~22-nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. The diversity of miRNAs in endothelial cells (ECs) and the relationship of this diversity to epithelial and hematologic cells is unknown. We investigated the baseline miRNA signature of human ECs cultured from the aorta (HAEC), coronary artery (HCEC), umbilical vein (HUVEC), pulmonary artery (HPAEC), pulmonary microvasculature (HPMVEC), dermal microvasculature (HDMVEC), and brain microvasculature (HBMVEC) to understand the diversity of miRNA expression in ECs. RESULTS: We identified 166 expressed miRNAs, of which 3 miRNAs (miR-99b, miR-20b and let-7b) differed significantly between EC types and predicted EC clustering. We confirmed the significance of these miRNAs by RT-PCR analysis and in a second data set by Sylamer analysis. We found wide diversity of miRNAs between endothelial, epithelial and hematologic cells with 99 miRNAs shared across cell types and 31 miRNAs unique to ECs. We show polycistronic miRNA chromosomal clusters have common expression levels within a given cell type. CONCLUSIONS: EC miRNA expression levels are generally consistent across EC types. Three microRNAs were variable within the dataset indicating potential regulatory changes that could impact on EC phenotypic differences. MiRNA expression in endothelial, epithelial and hematologic cells differentiate these cell types. This data establishes a valuable resource characterizing the diverse miRNA signature of ECs.


Asunto(s)
Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Diferenciación Celular , Niño , Cromosomas Humanos/genética , Análisis por Conglomerados , Biología Computacional , Células Endoteliales/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Variación Genética , Humanos , Especificidad de Órganos , Reproducibilidad de los Resultados
17.
RNA Biol ; 8(6): 1105-14, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21955497

RESUMEN

MicroRNAs (miRNAs) regulate gene expression in a variety of biological pathways such as development and tumourigenesis. miRNAs are initially expressed as long primary transcripts (pri-miRNAs) that undergo sequential processing by Drosha and then Dicer to yield mature miRNAs. miR-17~92 is a miRNA cluster that encodes 6 miRNAs and while it is essential for development it also has reported oncogenic activity. To date, the role of RNA structure in miRNA biogenesis has only been considered in terms of the secondary structural elements required for processing of pri-miRNAs by Drosha. Here we report that the miR-17~92 cluster has a compact globular tertiary structure where miRNAs internalized within the core of the folded structure are processed less efficiently than miRNAs on the surface of the structure. Increased miR-92 expression resulting from disruption of the compact miR-17~92 structure results in increased repression of integrin α5 mRNA, a known target of miR-92a. In summary, we describe the first example of pri-miRNA structure modulating differential expression of constituent miRNAs.


Asunto(s)
MicroARNs/química , Pliegue del ARN , Secuencia de Bases , Línea Celular , Regulación de la Expresión Génica , Humanos , Integrina alfa5/genética , Datos de Secuencia Molecular , Familia de Multigenes , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
18.
Mol Cancer Ther ; 10(8): 1470-80, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21622730

RESUMEN

Mis-expression of microRNAs (miRNA) is widespread in human cancers, including in pancreatic cancer. Aberrations of miRNA include overexpression of oncogenic miRs (Onco-miRs) or downregulation of so-called tumor suppressor TSG-miRs. Restitution of TSG-miRs in cancer cells through systemic delivery is a promising avenue for pancreatic cancer therapy. We have synthesized a lipid-based nanoparticle for systemic delivery of miRNA expression vectors to cancer cells (nanovector). The plasmid DNA-complexed nanovector is approximately 100 nm in diameter and shows no apparent histopathologic or biochemical evidence of toxicity upon intravenous injection. Two miRNA candidates known to be downregulated in the majority of pancreatic cancers were selected for nanovector delivery: miR-34a, which is a component of the p53 transcriptional network and regulates cancer stem cell survival, and the miR-143/145 cluster, which together repress the expression of KRAS2 and its downstream effector Ras-responsive element binding protein-1 (RREB1). Systemic intravenous delivery with either miR-34a or miR-143/145 nanovectors inhibited the growth of MiaPaCa-2 subcutaneous xenografts (P < 0.01 for miR-34a; P < 0.05 for miR-143/145); the effects were even more pronounced in the orthotopic (intrapancreatic) setting (P < 0.0005 for either nanovector) when compared with vehicle or mock nanovector delivering an empty plasmid. Tumor growth inhibition was accompanied by increased apoptosis and decreased proliferation. The miRNA restitution was confirmed in treated xenografts by significant upregulation of the corresponding miRNA and significant decreases in specific miRNA targets (SIRT1, CD44 and aldehyde dehydrogenase for miR34a, and KRAS2 and RREB1 for miR-143/145). The nanovector is a platform with potential broad applicability in systemic miRNA delivery to cancer cells.


Asunto(s)
MicroARNs/administración & dosificación , Neoplasias Pancreáticas/terapia , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Masculino , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Genes Dev ; 24(24): 2754-9, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21159816

RESUMEN

Although activating mutations in RAS oncogenes are known to result in aberrant signaling through multiple pathways, the role of microRNAs (miRNAs) in the Ras oncogenic program remains poorly characterized. Here we demonstrate that Ras activation leads to repression of the miR-143/145 cluster in cells of human, murine, and zebrafish origin. Loss of miR-143/145 expression is observed frequently in KRAS mutant pancreatic cancers, and restoration of these miRNAs abrogates tumorigenesis. miR-143/145 down-regulation requires the Ras-responsive element-binding protein (RREB1), which represses the miR-143/145 promoter. Additionally, KRAS and RREB1 are targets of miR-143/miR-145, revealing a feed-forward mechanism that potentiates Ras signaling.


Asunto(s)
Regulación hacia Abajo/genética , MicroARNs/genética , Neoplasias Pancreáticas/etiología , Proteínas ras/fisiología , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Humanos , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas ras/genética
20.
Mol Biosyst ; 6(10): 1873-82, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20544124

RESUMEN

Although the targets of most miRNAs have not been experimentally identified, microRNAs (miRNAs) have begun to be extensively characterized in physiological, developmental and disease-related contexts in recent years. Thus far, mainly computational approaches have been employed to predict potential targets for the large majority of miRNAs. Although miRNAs exert a major influence on the efficiency of translation of their targets in animals, most studies describing experimental identification of miRNA target genes are based on detection of altered mRNA levels. miR-143 is a miRNA involved in tumorigenesis in multiple types of cancer, smooth muscle cell fate and adipocyte differentiation. Only a few miR-143 targets are experimentally verified, so we employed a SILAC-based quantitative proteomic strategy to systematically identify potential targets of miR-143. In total, we identified >1200 proteins from MiaPaCa2 pancreatic cancer cells, of which 93 proteins were downregulated >2-fold in miR-143 mimic transfected cells as compared to controls. Validation of 34 of these candidate targets in luciferase assays showed that 10 of them were likely direct targets of miR-143. Importantly, we also carried out gene expression profiling of the same cells and observed that the majority of the candidate targets identified by proteomics did not show a concomitant decrease in mRNA levels confirming that miRNAs affect the expression of most targets through translational inhibition. Our study clearly demonstrates that quantitative proteomic approaches are important and necessary for identifying miRNA targets.


Asunto(s)
MicroARNs/genética , Proteómica , Luciferasas/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...